Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is increasing use of immunosuppressants such as mycophenolate mofetil and azathioprine because of their effectiveness. In chronic refractory cases, where immune pathogenesis has been confirmed, the off-label use of the "vinca" alkaloid and chemotherapy agent vincristine may be attempted. However, vincristine has significant side effects and its use in treating ITP must be approached with caution, especially in children.
Intravenous immunoglobulin (IVIg) may be infused in some cases in order to decrease the rate at which macrophages consume antibody-tagged platelets. However, while sometimes effective, it is costly and produces improvement that generally lasts less than a month. Nevertheless, in the case of an ITP patient already scheduled for surgery who has a dangerously low platelet count and has experienced a poor response to other treatments, IVIg can rapidly increase platelet counts, and can also help reduce the risk of major bleeding by transiently increasing platelet counts.
Discontinuation of heparin is critical in a case of heparin-induced thrombocytopenia (HIT). Beyond that, however, clinicians generally treat to avoid a thrombosis, often by starting patients directly on warfarin. For this reason, patients are usually treated with a direct thrombin inhibitor, such as lepirudin or argatroban, which are approved by the FDA for this use. Other blood thinners sometimes used in this setting that are not FDA-approved for treatment of HIT include bivalirudin and fondaparinux. Platelet transfusions are not routinely used to treat HIT because thrombosis, not bleeding, is the primary problem.
Treatment is guided by the severity and specific cause of the disease. Treatment focuses on eliminating the underlying problem, whether that means discontinuing drugs suspected to cause it or treating underlying sepsis. Diagnosis and treatment of serious thrombocytopenia is usually directed by a hematologist. Corticosteroids may be used to increase platelet production. Lithium carbonate or folate may also be used to stimulate platelet production in the bone marrow.
Cordocentesis can be performed in utero to determine the platelet count of the fetus. This procedure is only performed if a "prior" pregnancy was affected by . Intrauterine transfusions can be performed during cordocentesis for primary prevention of intracerebral hemorrhage. Any administered cellular blood products must be irradiated to reduce the risk of graft-versus-host disease in the fetus. Additionally, all administered blood products should be reduced-risk ( seronegative and leukoreduced are considered essentially equivalent for the purposes of risk reduction).
If intrauterine platelet transfusions are performed, they are generally repeated weekly (platelet lifespan after transfusion is approximately 8 to 10 days). Platelets administered to the fetus must be negative for the culprit antigen (often -1a, as stated above). Many blood suppliers (such as American Red Cross and United Blood Services) have identified -1a negative donors. An alternative donor is the mother who is, of course, negative for the culprit antigen. However, she must meet general criteria for donation and platelets received from the mother must be washed to remove the offending alloantibody and irradiated to reduce the risk of graft-versus-host disease. If platlet transfusions are needed urgently, incompatible platelets may be used, with the understanding that they may be less effective and that the administration of any blood product carries risk.
The use of Intravenous immunoglobulin () during pregnancy and immediately after birth has been shown to help reduce or alleviate the effects of in infants and reduce the severity of thrombocytopenia. The most common treatment is weekly infusions at a dosage of 1 g/kg beginning at 16 to 28 weeks of pregnancy, depending on the severity of the disease in the previous affected child, and continuing until the birth of the child. In some cases this dosage is increased to 2 g/kg and/or combined with a course of prednisone depending on the exact circumstances of the case. Although this treatment has not been shown to be effective in all cases it has been shown to reduce the severity of thrombocytopenia in some. Also, it is suspected that (though not understood why) provides some added protection from intercranial haemorrhage () to the fetus. Even with treatment, the fetal platelet count may need to be monitored and platelet transfusions may still be required.
The goal of both and platelet transfusion is to avoid hemorrhage. Ultrasound monitoring to detect hemorrhage is not recommended as detection of intracranial hemorrhage generally indicates permanent brain damage (there is no intervention that can be performed to reverse the damage once it has occurred).
Before delivery, the fetal platelet count should be determined. A count of >50,000 μL is recommended for vaginal delivery and the count should be kept above 20,000 μL after birth.
Often, no treatment is required or necessary for reactive thrombocytosis. In cases of reactive thrombocytosis of more than 1,000x10/L, it may be considered to administer daily low dose aspirin (such as 65 mg) to minimize the risk of stroke or thrombosis.
However, in primary thrombocytosis, if platelet counts are over 750,000 or 1,000,000, and especially if there are other risk factors for thrombosis, treatment may be needed. Selective use of aspirin at low doses is thought to be protective. Extremely high platelet counts in primary thrombocytosis can be treated with hydroxyurea (a cytoreducing agent) or anagrelide (Agrylin).
In Jak-2 positive disorders, ruxolitinib (Jakafi) can be effective.
Given the fact that HIT predisposes strongly to new episodes of thrombosis, it is not sufficient to simply discontinue the heparin administration. Generally, an alternative anticoagulant is needed to suppress the thrombotic tendency while the generation of antibodies stops and the platelet count recovers. To make matters more complicated, the other most commonly used anticoagulant, warfarin, should not be used in HIT until the platelet count is at least 150 x 10^9/L because there is a very high risk of warfarin necrosis in people with HIT who have low platelet counts. Warfarin necrosis is the development of skin gangrene in those receiving warfarin or a similar vitamin K inhibitor. If the patient was receiving warfarin at the time when HIT is diagnosed, the activity of warfarin is reversed with vitamin K. Transfusing platelets is discouraged, as there is a theoretical risk that this may worsen the risk of thrombosis; the platelet count is rarely low enough to be the principal cause of significant hemorrhage.
Various non-heparin agents are used to provide anticoagulation in those with strongly suspected or proven HIT: danaparoid, fondaparinux, bivalirudin and argatroban. These are alternatives to heparin therapy. Not all agents are available in all countries, and not all are approved for this specific use. For instance, argatroban is only recently licensed in the United Kingdom, and danaparoid is not available in the United States. Fondaparinux, a Factor Xa inhibitor, is commonly used off label for HIT treatment in the United States.
According to a systematic review, people with HIT treated with lepirudin showed a relative risk reduction of clinical outcome (death, amputation, etc.) to be 0.52 and 0.42 when compared to patient controls. In addition, people treated with argatroban for HIT showed a relative risk reduction of the above clinical outcomes to be 0.20 and 0.18. Lepirudin production stopped on May 31, 2012.
Protamine reverses the effect of unfractionated heparin, but only partially binds to and reverses LMWH. A dose of 1 mg protamine / 100 IU LMWH reverses 90% of its anti-IIa and 60% of anti-Xa activity, but the clinical effect of the residual anti-Xa activity is not known. Both anti-IIa and anti-Xa activity may return up to three hours after protamine reversal, possibly due to release of additional LMWH from depot tissues.
Anticoagulant therapy with LMWH is not usually monitored. LMWH therapy does not affect the prothrombin time (PT) or the INR, and anti-Xa levels are not reliable. It can prolong the partial thromboplastin time (APTT) in some women, but still, the APTT is not useful for monitoring.
To check for any thrombocytopenia, platelet count should be checked prior to commencing anticoagulant therapy, then seven to 10 days after commencement, and monthly thereafter. Platelet count should also be checked if unexpected bruising or bleeding occurs.
Treatment is directed at the prevention of haemorrhagic shock. Standard dose prednisolone does not increase the platelet count. High-dose methylprednisolone therapy in children with Onyalai has been shown to improve platelet count and reduce the requirement for transfusions. Vincristine sulphate may be of benefit to some patients. Splenectomy is indicated in patients with severe uncontrollable haemorrhage. High-dose intravenous gammaglobulin may help in increasing the platelet count and cessation of haemorrhage.
The only effective treatment is prompt delivery of the baby. Several medications have been investigated for the treatment of HELLP syndrome, but evidence is conflicting as to whether magnesium sulfate decreases the risk of seizures and progress to eclampsia. The disseminated intravascular coagulation is treated with fresh frozen plasma to replenish the coagulation proteins, and the anemia may require blood transfusion. In mild cases, corticosteroids and antihypertensives (labetalol, hydralazine, nifedipine) may be sufficient. Intravenous fluids are generally required. Hepatic hemorrhage can be treated with embolization, as well, if life-threatening bleeding ensues.
The University of Mississippi standard protocol for HELLP includes corticosteroids. However, a 2009 review found "no conclusive evidence" supporting corticosteroid therapy, and a 2010 systematic review by the Cochrane Collaboration also found "no clear evidence of any effect of corticosteroids on substantive clinical outcomes" either for the mothers or for the newborns,
Immune thrombocytopenic purpura (), sometimes called idiopathic thrombocytopenic purpura is a condition in which autoantibodies are directed against a patient's own platelets, causing platelet destruction and thrombocytopenia. Anti-platelet autoantibodies in a pregnant woman with immune thrombocytopenic purpura will attack the patient's own platelets and will also cross the placenta and react against fetal platelets. Therefore, is a significant cause of fetal and neonatal immune thrombocytopenia. Approximately 10% of newborns affected by will have platelet counts <50,000 μL and 1% to 2% will have a risk of intracerebral hemorrhage comparable to infants with .
Mothers with thrombocytopenia or a previous diagnosis of should be tested for serum antiplatelet antibodies. A woman with symptomatic thrombocytopenia and an identifiable antiplatelet antibody should be started on therapy for their which may include steroids or . Fetal blood analysis to determine the platelet count is not generally performed as -induced thrombocytopenia in the fetus is generally less severe than . Platelet transfusions may be performed in newborns, depending on the degree of thrombocytopenia.
There has been no general recommendation for treatment of patients with Giant Platelet Disorders, as there are many different specific classifications to further categorize this disorder which each need differing treatments. Platelet transfusion is the main treatment for people presenting with bleeding symptoms. There have been experiments with DDAVP (1-deamino-8-arginine vasopressin) and splenectomy on people with Giant platelet disorders with mixed results, making this type of treatment contentious.
The intrapartum and postpartum administration of magnesium sulfate is recommended in severe pre-eclampsia for the prevention of eclampsia. Further, magnesium sulfate is recommended for the treatment of eclampsia over other anticonvulsants. Magnesium sulfate acts by interacting with NMDA receptors.
The World Health Organization recommends that women with severe hypertension during pregnancy should receive treatment with anti-hypertensive agents. Severe hypertension is generally considered systolic BP of at least 160 or diastolic BP of at least 110. Evidence does not support the use of one anti-hypertensive over another. The choice of which agent to use should be based on the prescribing clinician's experience with a particular agent, its cost, and its availability. Diuretics are not recommended for prevention of preeclampsia and its complications. Labetolol, Hydralazine and Nifedipine are commonly used antihypertensive agents for hypertension in pregnancy. ACE inhibitors and angiotensin receptor blockers are contraindicated as they affect fetal development.
The goal of treatment of severe hypertension in pregnancy is to prevent cardiovascular, kidney, and cerebrovascular complications. The target blood pressure has been proposed to be 140–160 mmHg systolic and 90–105 mmHg diastolic, although values are variable.
Initial treatment is with glucocorticoid corticosteroids or intravenous immunoglobulin, a procedure that is also used in ITP cases. In children, good response to a short steroid course is achieved in approximately 80 percent of cases. Although the majority of cases initially respond well to treatment, relapses are not uncommon and immunosuppressive drugs (e.g. ciclosporin, mycophenolate mofetil, vincristine and danazol) are subsequently used, or combinations of these.
The off-label use of rituximab (trade name Rituxan) has produced some good results in acute and refractory cases, although further relapse may occur within a year. Splenectomy is effective in some cases, but relapses are not uncommon.
The only prospect for a permanent cure is the high-risk option of an allogeneic hematopoietic stem cell transplantation (SCT).
Treatment for individuals with X-linked thrombocytopenia is typically focused on managing symptoms of the disorder. Splenectomy has been shown to improve platelet counts but also significantly increases the risk of life-threatening infections for patients with XLT. Therefore, these individuals must take antibiotics for the rest of their life to avoid fatal bacteremia. In the event of significant bleeding, platelet transfusions should be administered. Circumcision should be avoided for infant males with XLT due to the risk of bleeding and infection. Regular follow ups to track blood counts should be utilized as well as confirming that any medications, over the counter or prescription, will not interfere with platelet functioning.
The effect of antibiotics in "E. coli" O157:H7 colitis is controversial. Certain antibiotics may stimulate further verotoxin production and thereby increase the risk of HUS. However, there is also tentative evidence that some antibiotics like quinolones may decrease the risk of hemolytic uremic syndrome. In the 1990s a group of pediatricians from the University of Washington used a network of 47 cooperating laboratories in Washington, Oregon, Idaho, and Wyoming to prospectively identify 73 children younger than 10 years of age who had diarrhea caused by "E. coli" O157:H7 The hemolytic–uremic syndrome developed in 5 of the 9 children given antibiotics (56 percent), and in 5 of the 62 children who were not given antibiotics (8 percent, P<0.001).
Treatment of HUS is generally supportive, with dialysis as needed. Platelet transfusion may actually worsen the outcome.
In most children with postdiarrheal HUS, there is a good chance of spontaneous resolution, so observation in a hospital is often all that is necessary, with supportive care such as hemodialysis where indicated. If a diagnosis of STEC-HUS is confirmed, plasmapheresis (plasma exchange) is contraindicated. However, plasmapheresis may be indicated when there is diagnostic uncertainty between HUS and TTP.
There are case reports of experimental treatments with eculizumab, a monoclonal antibody against CD5 that blocks part of the complement system, being used to treat congenital atypical hemolytic uremic syndrome, as well as severe shiga-toxin associated hemolytic uremic syndrome. These have shown promising results. Eculizeumab was approved by the U.S. Food and Drug Administration (FDA) on March 13, 2007 for the treatment of paroxysmal nocturnal hemoglobinuria (PNH), a rare, progressive, and sometimes life-threatening disease characterized by excessive hemolysis; and on September 23, 2011 for the treatment of atypical hemolytic uremic syndrome (aHUS) It was approved by the European Medicines Agency for the treatment of PNH on June 20, 2007, and on November 29, 2011 for the treatment of aHUS. However, of note is the exceedingly high cost of treatment, with one year of the drug costing over $500,000.
Scientists are trying to understand how useful it would be to immunize humans or cattles with vaccines.
In terms of treatment/management, bleeding events can be controlled by platelet transfusion.
Most heterozygotes, with few exceptions, do not have a bleeding diathesis. BSS presents as a bleeding disorder due to the inability of platelets to bind and aggregate at sites of vascular endothelial injury. In the event of an individual with mucosal bleeding tranexamic acid can be given.
The affected individual may need to avoid contact sports and medications such as aspirin, which can increase the possibility of bleeding. A potential complication is the possibility of the individual producing antiplatelet antibodies
Patient with KMS can be extremely ill and may need intensive care. They are at risk of bleeding complications including intracranial hemorrhage. The thrombocytopenia and coagulopathy are managed with platelet transfusions and fresh frozen plasma, although caution is needed due to the risk of fluid overload and heart failure from multiple transfusions. The possibility of disseminated intravascular coagulation, a dangerous and difficult-to-manage condition, is concerning. Anticoagulant and antiplatelet medications can be used after careful assessment of the risks and benefits.
If monitoring reveals failing control of glucose levels with these measures, or if there is evidence of complications like excessive fetal growth, treatment with insulin might be necessary. This is most commonly fast-acting insulin given just before eating to blunt glucose rises after meals. Care needs to be taken to avoid low blood sugar levels due to excessive insulin. Insulin therapy can be normal or very tight; more injections can result in better control but requires more effort, and there is no consensus that it has large benefits. A 2016 Cochrane review concluded that quality evidence is not yet available to determine the best blood sugar range for improving health for pregnant women with GDM and their babies.
There is some evidence that certain medications by mouth might be safe in pregnancy, or at least, are less dangerous to the developing fetus than poorly controlled diabetes. The medication metformin is better than glyburide. If blood glucose cannot be adequately controlled with a single agent, the combination of metformin and insulin may be better than insulin alone. Another review found good short term safety for both the mother and baby with metformin but unclear long term safety.
People may prefer metformin by mouth to insulin injections. Treatment of polycystic ovarian syndrome with metformin during pregnancy has been noted to decrease GDM levels.
Almost half of the women did not reach sufficient control with metformin alone and needed supplemental therapy with insulin; compared to those treated with insulin alone, they required less insulin, and they gained less weight. With no long-term studies into children of women treated with the drug, there remains a possibility of long-term complications from metformin therapy. Babies born to women treated with metformin have been found to develop less visceral fat, making them less prone to insulin resistance in later life.
Recent research has suggested that hematopoietic stem cell transplantation may be a treatment option for patients with XLT despite associated risks. Other studies have shown that treatment with corticosteroids or intravenous immunoglobulin in any dose or duration may have a beneficial impact on platelet counts, although transiently. Furthermore, research has shown that splenectomy may not be a good treatment option for patients with XLT as it increases the risk of severe infections. This same research showed that patients with XLT have a high overall survival rate but they are at risk for severe life-threatening complications associated with this disorder, such as serious bleeding events and malignancies.
Management of KMS, particularly in severe cases, can be complex and require the joint effort of multiple subspecialists. This is a rare disease with no consensus treatment guidelines or large randomized controlled trials to guide therapy.
The primary treatment for CAMT is bone marrow transplantation.
Bone Marrow/Stem Cell Transplant is the only thing that ultimately cures this genetic disease. Frequent platelet transfusions are required to ensure that platelet levels do not fall to dangerous levels, although this is not always the case. It is known for patients to continue to create very small numbers of platelets over time.
Counselling before pregnancy (for example, about preventive folic acid supplements) and multidisciplinary management are important for good pregnancy outcomes. Most women can manage their GDM with dietary changes and exercise. Self monitoring of blood glucose levels can guide therapy. Some women will need antidiabetic drugs, most commonly insulin therapy.
Any diet needs to provide sufficient calories for pregnancy, typically 2,000 – 2,500 kcal with the exclusion of simple carbohydrates. The main goal of dietary modifications is to avoid peaks in blood sugar levels. This can be done by spreading carbohydrate intake over meals and snacks throughout the day, and using slow-release carbohydrate sources—known as the G.I. Diet. Since insulin resistance is highest in mornings, breakfast carbohydrates need to be restricted more. Ingesting more fiber in foods with whole grains, or fruit and vegetables can also reduce the risk of gestational diabetes.
Regular moderately intense physical exercise is advised, although there is no consensus on the specific structure of exercise programs for GDM.
Self monitoring can be accomplished using a handheld capillary glucose dosage system. Compliance with these glucometer systems can be low. Target ranges advised by the Australasian Diabetes in Pregnancy Society are as follows:
- fasting capillary blood glucose levels <5.5 mmol/L
- 1 hour postprandial capillary blood glucose levels <8.0 mmol/L
- 2 hour postprandial blood glucose levels <6.7 mmol/L
Regular blood samples can be used to determine HbA1c levels, which give an idea of glucose control over a longer time period.
Research suggests a possible benefit of breastfeeding to reduce the risk of diabetes and related risks for both mother and child.