Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The most common treatment for hookworm are benzimidazoles, specifically albendazole and mebendazole. BZAs kill adult worms by binding to the nematode’s β-tubulin and subsequently inhibiting microtubule polymerization within the parasite. In certain circumstances, levamisole and pyrantel pamoate may be used. A 2008 review found that the efficacy of single-dose treatments for hookworm infections were as follows: 72% for albendazole, 15% for mebendazole, and 31% for pyrantel pamoate. This substantiates prior claims that albendazole is much more effective than mebendazole for hookworm infections. Also of note is that the World Health Organization does recommend anthelmintic treatment in pregnant women after the first trimester. It is also recommended that if the patient also suffers from anemia that ferrous sulfate (200 mg) be administered three times daily at the same time as anthelmintic treatment; this should be continued until hemoglobin values return to normal which could take up to 3 months.
Hookworm infection can be treated with local cryotherapy when the hookworm is still in the skin.
Albendazole is effective both in the intestinal stage and during the stage the parasite is still migrating under the skin.
In case of anemia, iron supplementation can cause relief symptoms of iron deficiency anemia. However, as red blood cell levels are restored, shortage of other essentials such as folic acid or vitamin B12 may develop, so these might also be supplemented.
Other important issues related to the treatment of hookworm are reinfection and drug resistance. It has been shown that reinfection after treatment can be extremely high. Some studies even show that 80% of pretreatment hookworm infection rates can be seen in treated communities within 30–36 months. While reinfection may occur, it is still recommended that regular treatments be conducted as it will minimize the occurrence of chronic outcomes. There are also increasing concerns about the issue of drug resistance. Drug resistance has appeared in front-line anthelmintics used for livestock nematodes. Generally human nematodes are less likely to develop resistance due to longer reproducing times, less frequent treatment, and more targeted treatment. Nonetheless, the global community must be careful to maintain the effectiveness of current anthelmintic as no new anthelmintic drugs are in the late-stage development.
Anti-helminthics are often used to kill off the worms, however in some cases this may cause patients to worsen due to toxins released by the dying worms. Albendazole, ivermectin, mebendazole, and pyrantel are all commonly used, though albendazole is usually the drug of choice. Studies have shown that anti-helminthic drugs may shorten the course of the disease and relieve symptoms. Therefore anti-helminthics are generally recommended, but should be administered gradually so as to limit the inflammatory reaction.
Anti-helminthics should generally be paired with corticosteroids in severe infections to limit the inflammatory reaction to the dying parasites. Studies suggest that a two-week regimen of a combination of mebendazole and prednisolone significantly shortened the course of the disease and length of associated headaches without observed harmful side effects. Other studies suggest that albendazole may be more favorable, because it may be less like to incite an inflammatory reaction. The Chinese herbal medicine long-dan-xie-gan-tan (LDGXT) has also been shown to have a similar anti inflammatory effect, and in mild cases may be used alone to relieve symptoms while infection resolves itself.
The drug of choice for the treatment of uncomplicated strongyloidiasis is ivermectin. Ivermectin does not kill the "Strongyloides" larvae, only the adult worms, therefore repeat dosing may be necessary to properly eradicate the infection. There is an auto-infective cycle of roughly two weeks in which Ivermectin should be re-administered however additional dosing may still be necessary as it will not kill "Strongyloides" in the blood or larvae deep within the bowels or diverticula. Other drugs that are effective are albendazole and thiabendazole (25 mg/kg twice daily for 5 days—400 mg maximum (generally)). All patients who are at risk of disseminated strongyloidiasis should be treated. The optimal duration of treatment for patients with disseminated infections is not clear.
Treatment of strongyloidiasis can be difficult and "Strongyloides" has been known to live in individuals for decades; even after treatment. Continued treatment is thus necessary even if symptoms resolve.
Because of the high cost of Stromectol, the veterinary formula Ivomec can be used. Government programs are needed to help citizens finance lifelong medication.
Clothes and sheets must be washed with enzyme washing powder and dried on hot daily.
Amphistomiasis is considered a neglected tropical disease, with no prescription drug for treatment and control. Therefore, management of infestation is based mainly on control of the snail population, which transmit the infective larvae of the flukes. However, there are now drugs shown to be effective including resorantel, oxyclozanide, clorsulon, ivermectin, niclosamide, bithional and levamisole. An in vitro demonstration shows that plumbagin exhibits high efficacy on adult flukes. Since the juvenile flukes are the causative individuals of the disease, effective treatment means control of the immature fluke population. Prophylaxis is therefore based on disruption of the environment (such as proper drainage) where the carrier snails inhabit, or more drastic action of using molluscicides to eradicate the entire population. For treatment of the infection, drugs effective against the immature flukes are recommended for drenching. For this reason oxyclozanide is advocated as the drug of choice. It effectively kills the flukes within a few hours and it effective against the flukes resistant to other drugs. The commercially prescribed dosage is 5 mg/kg body weight or 18.7 mg/kg body weight in two divided dose within 72 hours. Niclosamide is also extensively used in mass drenching of sheep. Successfully treated sheep regain appetite within a week, diarrhoea stops in about three days, and physiological indicators (such as plasma protein and albumin levels) return to normal in a month.
There is a lack of scientific study to support the efficacy of any particular treatment. An additional review published in 2009 made a similar conclusion, noting that because the diagnostics in use have been unreliable, it has been impossible to determine whether a drug has eradicated the infection, or just made the patient feel better. Historical reports, such as one from 1916, note difficulty associated with eradication of "Blastocystis" from patients, describing it as "an infection that is hard to get rid of."
A 1999 "in vitro" study from Pakistan found 40% of isolates are resistant to common antiprotozoal drugs. A study of isolates from patients diagnosed with IBS found 40% of isolates resistant to metronidazole and 32% resistant to furazolidone. Drugs reported in studies to be effective in eradicating "Blastocystis" infection have included metronidazole, trimethoprim, TMP-SMX (only trimethoprim is active with sulphamethoxazole demonstrating no activity), tetracycline, doxycycline, nitazoxanide, pentamidine, paromomycin and iodoquinol. Iodoquinol has been found to be less effective in practice than in-vitro. Miconazole and quinacrine have been reported as effective agents against "Blastocystis" growth in-vitro. Rifaximin, and albendazole have shown promise as has ivermectin which demonstrated high effectiveness against blastocystis hominis isolates in an in vitro study. There is also evidence that the probiotic yeast "Saccharomyces boulardii", and the plant mallotus oppositifolius may be effective against "Blastocystis" infections.
Physicians have described the successful use of a variety of discontinued antiprotozoals in treatment of "Blastocystis" infection. Emetine was reported as successful in cases in early 20th century with British soldiers who contracted "Blastocystis" infection while serving in Egypt. "In vitro" testing showed emetine was more effective than metronidazole or furazolidone. Emetine is available in the United States through special arrangement with the Center for Disease Control. Clioquinol (Entero-vioform) was noted as successful in treatment of "Blastocystis" infection but removed from the market following an adverse event in Japan. Stovarsol and Narsenol, two arsenic-based antiprotozoals, were reported to be effective against the infection. Carbarsone was available as an anti-infective compound in the United States as late as 1991, and was suggested as a possible treatment. The reduction in the availability of antiprotozoal drugs has been noted as a complicating factor in treatment of other protozoal infections. For example, in Australia, production of diloxanide furoate ended in 2003, paromomycin is available under special access provisions, and the availability of iodoquinol is limited.
The medications prescribed for acute toxoplasmosis are the following:
- Pyrimethamine — an antimalarial medication
- Sulfadiazine — an antibiotic used in combination with pyrimethamine to treat toxoplasmosis
- Combination therapy is usually given with folic acid supplements to reduce incidence of thrombocytopaenia.
- Combination therapy is most useful in the setting of HIV.
- Clindamycin
- Spiramycin — an antibiotic used most often for pregnant women to prevent the infection of their children.
(other antibiotics, such as minocycline, have seen some use as a salvage therapy).
If infected during pregnancy, spiramycin is recommended in the first and early second trimesters while pyrimethamine/sulfadiazine and leucovorin is recommended in the late second and third trimesters.
In people with latent toxoplasmosis, the cysts are immune to these treatments, as the antibiotics do not reach the bradyzoites in sufficient concentration.
The medications prescribed for latent toxoplasmosis are:
- Atovaquone — an antibiotic that has been used to kill "Toxoplasma" cysts inside AIDS patients
- Clindamycin — an antibiotic that, in combination with atovaquone, seemed to optimally kill cysts in mice
The preventative measure of keeping cats inside in areas with high infection rates can prevent infection. Approved tick treatments for cats can be used but have been shown not to fully prevent tick bites.
The most often used treatments for cytauxzoonosis are imidocarb dipropionate and a combination of atovaquone and azithromycin. Although imidocarb has been used for years, it is not particularly effective. In a large study, only 25% of cats treated with this drug and supportive care survived. 60% of sick cats treated with supportive care and the combination of the anti-malarial drug atovaquone and the antibiotic azithromycin survived infection.
Quick referral to a veterinarian equipped to treat the disease may be beneficial. All infected cats require supportive care, including careful fluids, nutritional support, treatment for complications, and often blood transfusion.
Cats that survive the infection should be kept indoors as they can be persistent carriers after surviving infection and might indirectly infect other cats after being themselves bitten by a vector tick.
Concomitant pinworm infection should also be excluded, although the association has not been proven. Successful treatment of the infection with iodoquinol, doxycycline, metronidazole, paromomycin, and secnidazole has been reported. Resistance requires the use of combination therapy to eradicate the organism. All persons living in the same residence should be screened for "D. fragilis", as asymptomatic carriers may provide a source of repeated infection. Paromomycin is an effective prophylactic for travellers who will encounter poor sanitation and unsafe drinking water.
One strategy for the prevention of infection transmission between cats and people is to better educate people on the behaviour that puts them at risk for becoming infected.
Those at the highest risk of contracting a disease from a cat are those with behaviors that include: being licked, sharing food, sharing kithchen utensils, kissing, and sleeping with a cat. The very young, the elderly and those who are immunocompromised increase their risk of becoming infected when sleeping with their cats (and dogs). The CDC recommends that cat owners not allow a cat to lick your face because it can result in disease transmission. If someone is licked on their face, mucous membranes or an open wound, the risk for infection is reduced if the area is immediately washed with soap and water. Maintaining the health of the animal by regular inspection for fleas and ticks, scheduling deworming medications along with veterinary exams will also reduce the risk of acquiring a feline zoonosis.
Recommendations for the prevention of ringworm transmission to people include:
- regularly vacuuming areas of the home that pets commonly visit helps to remove fur or flakes of skin
- washing the hands with soap and running water after playing with or petting your pet.
- wearing gloves and long sleeves when handling cats infected with.
- disinfect areas the pet has spent time in, including surfaces and bedding.
- the spores of this fungus can be killed with common disinfectants like chlorine bleach diluted 1:10 (1/4 cup in 1 gallon of water), benzalkonium chloride, or strong detergents.
- not handling cats with ringworm by those whose immune system is weak in any way (if you have HIV/AIDS, are undergoing cancer treatment, or are taking medications that suppress the immune system, for example).
- taking the cat to the veterinarian if ringworm infection is suspected.
Strongyloidiasis is a human parasitic disease caused by the nematode called "Strongyloides stercoralis", or sometimes "S. fülleborni" which is a type of helminth. It belongs to a group of nematodes called roundworms. This intestinal worm can cause a number of symptoms in people, principally skin symptoms, abdominal pain, diarrhea and weight loss. In some people, particularly those who require corticosteroids or other immunosuppressive medication, "Strongyloides" can cause a hyperinfection syndrome that can lead to death if untreated. The diagnosis is made by blood and stool tests. The medication ivermectin is widely used to treat strongyloidiasis.
Strongyloidiasis is a type of soil-transmitted helminthiasis. It is thought to affect 30–100 million people worldwide, mainly in tropical and subtropical countries. It belongs to the group of neglected tropical diseases, and worldwide efforts are aimed at eradicating the infection.
Amphistomiasis or paramphistomiasis (alternatively spelled amphistomosis or paramphistomosis) is a parasitic disease of livestock animals, more commonly of cattle and sheep, and humans caused by immature helminthic flatworms belonging to the order Echinostomida. The term amphistomiasis is used for broader connotation implying the disease inflicted by members of Echinostomida including the family Paramphistomidae/Gastrodiscidae (to be precise, the species "Gastrodiscoides hominis"); whereas paramphistomiasis is restricted to that of the members of the family Paramphistomatidae only. "G. discoides" and "Watsonius watsoni" are responsible for the disease in humans, while most paramphistomes are responsible in livestock animals, and some wild mammals. In livestock industry the disease causes heavy economic backlashes due to poor production of milk, meat and wool.
Dientamoebiasis is a medical condition caused by infection with "Dientamoeba fragilis", a single-cell parasite that infects the lower gastrointestinal tract of humans. It is an important cause of traveler's diarrhea, chronic abdominal pain, chronic fatigue, and failure to thrive in children.
Some vertically transmitted infections, such as toxoplasmosis and syphilis, can be effectively treated with antibiotics if the mother is diagnosed early in her pregnancy. Many viral vertically transmitted infections have no effective treatment, but some, notably rubella and varicella-zoster, can be prevented by vaccinating the mother prior to pregnancy.
If the mother has active herpes simplex (as may be suggested by a pap test), delivery by Caesarean section can prevent the newborn from contact, and consequent infection, with this virus.
IgG antibody may play crucial role in prevention of intrauterine infections and extensive research is going on for developing IgG-based therapies for treatment and vaccination.
While many enteric protists are the subject of research, "Blastocystis" is unusual in that basic questions concerning how it should be diagnosed and treated and how it causes disease remain unsettled. The following groups have ongoing research programs directed at these questions:
Cryptosporidiosis is a parasitic disease that is transmitted through contaminated food or water from an infected person or animal. Cryptosporidiosis in cats is rare, but they can carry the protozoan without showing any signs of illness. Cryptosporidiosis can cause profuse, watery diarrhea with cramping, abdominal pain, and nausea in people. Illness in people is usually self-limiting and lasts only 2–4 days, but can become severe in people with weakened immune systems. Cryptosporidiosis (Cryptosporidium spp.) Cats transmit the protozoan through their feces. The symptoms in people weight loss and chronic diarrhea in high-risk patients. More than one species of this genus can be acquired by people. Dogs can also transmit this parasite.
Treatment depends on the type of opportunistic infection, but usually involves different antibiotics.
Neonatal infection treatment is typically started before the diagnosis of the cause can be confirmed.
Neonatal infection can be prophylactically treated with antibiotics. Maternal treatment with antibiotics is primarily used to protect against group B streptococcus.
Women with a history of HSV, can be treated with antiviral drugs to prevent symptomatic lesions and viral shedding that could infect the infant at birth. The antiviral medications used include acyclovir, penciclovir, valacyclovir, and famciclovir. Only very small amounts of the drug can be detected in the fetus. There are no increases in drug-related abnormalities in the infant that could be attributed to acyclovir. Long-term effects of antiviral medications have not been evaluated for their effects after growth and development of the child occurs. Neutropenia can be a complication of acyclovir treatment of neonatal HSV infection, but is usually transient. Treatment with immunoglobulin therapy has not been proven to be effective.
Each type of vertically transmitted infection has a different prognosis. The stage of the pregnancy at the time of infection also can change the effect on the newborn.
Treatment for both pregnant and non-pregnant women is usually with metronidazole, by mouth once. Caution should be used in pregnancy, especially in the first trimester. Sexual partners, even if they have no symptoms, should also be treated.
For 95-97% of cases, infection is resolved after one dose of metronidazole. Studies suggest that 4-5% of trichomonas cases are resistant to metronidazole, which may account for some “repeat” cases. Without treatment, trichomoniasis can persist for months to years in women, and is thought to improve without treatment in men. Women living with HIV infection have better cure rates if treated for 7 days rather than with one dose.
Topical treatments are less effective than oral antibiotics due to Skene's gland and other genitourinary structures acting as a reservoir.
Individuals at higher risk are often prescribed prophylactic medication to prevent an infection from occurring. A patient's risk level for developing an opportunistic infection is approximated using the patient's CD4 T-cell count and sometimes other markers of susceptibility. Common prophylaxis treatments include the following:
Evidence from a randomized controlled trials for screening pregnant women who do not have symptoms for infection with trichomoniasis and treating women who test positive for the infection have not consistently shown a reduced risk of preterm birth. Further studies are needed to verify this result and determine the best method of screening. In the US, screening of pregnant women without any symptoms is only recommended in those with HIV as trichomonas infection is associated with increased risk of transmitting HIV to the fetus.
Cytauxzoon felis is a protozoal organism transmitted to domestic cats by tick bites, and whose natural reservoir host is the bobcat. "C. felis" has been found in other wild felid species such as Florida bobcat, eastern bobcat, Texas cougar, and a white tiger in captivity. "C. felis" infection is limited to the family felidae which means that "C. felis" poses no zoonotic (transmission to humans) risk or agricultural (transmission to farm animals) risk. Until recently it was believed that after infection with "C. felis", pet cats almost always died. As awareness of "C. felis" has increased it has been found that treatment is not always futile. More cats have been shown to survive the infection than was previously thought. New treatments offer as much as 60% survival rate.