Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The treatment is with a low sodium (low salt) diet and a potassium-sparing diuretic that directly blocks the sodium channel. Potassium-sparing diuretics that are effective for this purpose include amiloride and triamterene; spironolactone is not effective because it acts by regulating aldosterone and Liddle syndrome does not respond to this regulation. Amiloride is the only treatment option that is safe in pregnancy. Medical treatment usually corrects both the hypertension and the hypokalemia, and as a result these patients may not require any potassium replacement therapy.
The treatment for AME is based on the blood pressure control with Aldosterone antagonist like Spironalactone which also reverses the hypokalemic metabolic alkalosis and other anti-hypertensives. Renal transplant is found curative in almost all clinical cases.AME is exceedingly rare, with fewer than 100 cases recorded worldwide.
Liquorice consumption may also cause a temporary form of AME due to its ability to block 11β-hydroxysteroid dehydrogenase type 2, in turn causing increased levels of cortisol. Cessation of licorice consumption will reverse this form of AME.
Treatment includes spironolactone, a potassium-sparing diuretic that works by acting as an aldosterone antagonist.
The treatment for hyperaldosteronism depends on the underlying cause. In people with a single benign tumor (adenoma), surgical removal (adrenalectomy) may be curative. This is usually performed laparoscopically, through several very small incisions. For people with hyperplasia of both glands, successful treatment is often achieved with spironolactone or eplerenone, drugs that block the effect of aldosterone. With its antiandrogen effect, spironolactone drug therapy may have a range of effects in males, including sometimes gynecomastia. These symptoms usually do not occur with eplerenone drug therapy.
In the absence of treatment, individuals with hyperaldosteronism often have poorly controlled high blood pressure, which may be associated with increased rates of stroke, heart disease, and kidney failure. With appropriate treatment, the prognosis is excellent.
In GRA, the hypersecretion of aldosterone and the accompanying hypertension are remedied when ACTH secretion is suppressed by administering glucocorticoids.
Dexamethasone, spironolactone and eplerenone have been used in treatment.
Unilateral primary hyperaldosteronism due to an adrenocortical adenoma or adrenocarcinoma can be potentially cured surgically. Unilateral adrenalectomy is the treatment of choice for unilateral PHA. Potential complications include hemorrhage and postoperative hypokalemia. With complete removal of the tumor, prognosis is excellent.
Bilateral primary hyperaldosteronism due to hyperplasia of the zona glomerulosa or metastasized adrenocortical adenocarcinoma should be treated medically. Medical therapy is aimed at normalizing blood pressure and plasma potassium concentration. Mineralocorticoid receptor blockers, such as spironolactone, coupled with potassium supplementation are the most commonly used treatments. Specific therapy for treating high blood pressure (e.g., amlodipine), should be added if necessary.
Treatment consists of oral bicarbonate supplementation. However, this will increase urinary bicarbonate wasting and may well promote a bicarbonate . The amount of bicarbonate given may have to be very large to stay ahead of the urinary losses. Correction with oral bicarbonate may exacerbate urinary potassium losses and precipitate hypokalemia. As with dRTA, reversal of the chronic acidosis should reverse bone demineralization.
Thiazide diuretics can also be used as treatment by making use of contraction alkalosis caused by them.
Treatment including addressing the cause, such as improving the diet, treating diarrhea, or stopping an offending medication. People without a significant source of potassium loss and who show no symptoms of hypokalemia may not require treatment.
Mild hypokalemia (>3.0 meq/l) may be treated with oral potassium chloride supplements (Klor-Con, Sando-K, Slow-K). As this is often part of a poor nutritional intake, potassium-containing foods may be recommended, such as leafy green vegetables, avocados, tomatoes, coconut water, citrus fruits, oranges, or bananas. Both dietary and pharmaceutical supplements are used for people taking diuretic medications.
Severe hypokalemia (<3.0 meq/l) may require intravenous supplementation. Typically, a saline solution is used, with 20–40 meq/l KCl per liter over 3–4 hours. Giving IV potassium at faster rates (20–25 meq/hr) may predispose to ventricular tachycardias and requires intensive monitoring. A generally safe rate is 10 meq/hr. Even in severe hypokalemia, oral supplementation is preferred given its safety profile. Sustained-release formulations should be avoided in acute settings.
Difficult or resistant cases of hypokalemia may be amenable to a potassium-sparing diuretic, such as amiloride, triamterene, spironolactone, or eplerenone. Concomitant hypomagnesemia will inhibit potassium replacement, as magnesium is a cofactor for potassium uptake.
When replacing potassium intravenously, infusion by a central line is encouraged to avoid the frequent occurrence of a burning sensation at the site of a peripheral infusion, or the rare occurrence of damage to the vein. When peripheral infusions are necessary, the burning can be reduced by diluting the potassium in larger amounts of fluid, or mixing 3 ml of 1% lidocaine to each 10 meq of KCl per 50 ml of fluid. The practice of adding lidocaine, however, raises the likelihood of serious medical errors.
Hypertension and mineralocorticoid excess is treated with glucocorticoid replacement, as in other forms of CAH.
Most genetic females with both forms of the deficiency will need replacement estrogen to induce puberty. Most will also need periodic progestin to regularize menses. Fertility is usually reduced because egg maturation and ovulation is poorly supported by the reduced intra-ovarian steroid production.
The most difficult management decisions are posed by the more ambiguous genetic (XY) males. Most who are severely undervirilized, looking more female than male, are raised as females with surgical removal of the nonfunctional testes. If raised as males, a brief course of testosterone can be given in infancy to induce growth of the penis. Surgery may be able to repair the hypospadias. The testes should be salvaged by orchiopexy if possible. Testosterone must be replaced in order for puberty to occur and continued throughout adult life.
Other conditions such as Liddle's Syndrome can mimic the clinical features of AME, so diagnosis can be made by calculating the ratio of free urinary cortisol to free urinary cortisone. Since AME patients create less cortisone, the ratio will much be higher than non-affected patients. Alternatively, one could differentiate between the two syndromes by administering a potassium-sparing diuretic. Patients with Liddle's syndrome will only respond to a diuretic that binds the ENaC channel, whereas those with AME will respond to a diuretic that binds to ENaC or the mineralcorticoid receptor.
Liddle's syndrome, also called Liddle syndrome is a genetic disorder inherited in an autosomal dominant manner that is characterized by early, and frequently severe, high blood pressure associated with low plasma renin activity, metabolic alkalosis, low blood potassium, and normal to low levels of aldosterone. Liddle syndrome involves abnormal kidney function, with excess reabsorption of sodium and loss of potassium from the renal tubule, and is treated with a combination of low sodium diet and potassium-sparing diuretic drugs (e.g. amiloride). It is extremely rare, with fewer than 30 pedigrees or isolated cases having been reported worldwide as of 2008.
Pseudohyperaldosteronism (also pseudoaldosteronism) is a medical condition that mimics hyperaldosteronism. Like hyperaldosteronism, it produces hypertension associated with low plasma renin activity, and metabolic alkalosis associated with hypokalemia. Unlike hyperaldosteronism, it involves aldosterone levels that are normal or low (hypoaldosteronism).
Familial hyperaldosteronism is a group of inherited conditions in which the adrenal glands, which are small glands located on top of each kidney, produce too much of the hormone aldosterone. Excess aldosterone causes the kidneys to retain more salt than normal, which in turn increases the body's fluid levels and causes high blood pressure. People with familial hyperaldosteronism may develop severe high blood pressure, often early in life. Without treatment, hypertension increases the risk of strokes, heart attacks, and kidney failure. There are other forms of hyperaldosteronism that are not inherited.
Familial hyperaldosteronism is categorized into three types, distinguished by their clinical features and genetic causes. In familial hyperaldosteronism type I, hypertension generally appears in childhood to early adulthood and can range from mild to severe. This type can be treated with steroid medications called glucocorticoids, so it is also known as glucocorticoid-remediable aldosteronism (GRA). In familial hyperaldosteronism type II, hypertension usually appears in early to middle adulthood and does not improve with glucocorticoid treatment. In most individuals with familial hyperaldosteronism type III, the adrenal glands are enlarged up to six times their normal size. These affected individuals have severe hypertension that starts in childhood. The hypertension is difficult to treat and often results in damage to organs such as the heart and kidneys. Rarely, individuals with type III have milder symptoms with treatable hypertension and no adrenal gland enlargement.
This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. The various types of familial hyperaldosteronism have different genetic causes.
It is unclear how common these diseases are. All together they appear to make up less than 1% of cases of hyperaldosteronism.
This condition is characterized by hypertension, kaliuresis and reduced plasma renin.
Certain medications, including NSAIDs (Motrin/Ibuprofen) and steroids can cause hypertension. Other medications include extrogens (such as those found in oral contraceptives with high estrogenic activity), certain antidepressants (such as venlafaxine), buspirone, carbamazepine, bromocriptine, clozapine, and cyclosporine.
High blood pressure that is associated with the sudden withdrawal of various antihypertensive medications is called rebound hypertension. The increases in blood pressure may result in blood pressures greater than when the medication was initiated. Depending on the severity of the increase in blood pressure, rebound hypertension may result in a hypertensive emergency. Rebound hypertension is avoided by gradually reducing the dose (also known as "dose tapering"), thereby giving the body enough time to adjust to reduction in dose. Medications commonly associated with rebound hypertension include centrally-acting antihypertensive agents, such as clonidine and methyl-dopa.
Other herbal or "natural products" which have been associated with hypertension include ma huang, St John's wort, and licorice.
Secondary refers to an abnormality that indirectly results in pathology through a predictable physiologic pathway, i.e., a renin-producing tumor leads to increased aldosterone, as the body's aldosterone production is normally regulated by renin levels.
One cause is a juxtaglomerular cell tumor. Another is renal artery stenosis, in which the reduced blood supply across the juxtaglomerular apparatus stimulates the production of renin. Likewise, fibromuscular dysplasia may cause stenosis of the renal artery, and therefore secondary hyperaldosteronism. Other causes can come from the tubules: Hyporeabsorption of sodium (as seen in Bartter and Gitelman syndromes) will lead to hypovolemia/hypotension, which will activate the RAAS.
Orofaciodigital syndrome type 1 can be treated with reconstructive surgery or the affected parts of the body. Surgery of cleft palate, tongue nodules, additional teeth, accessory frenulae, and orthodontia for malocclusion. Routine treatment for patients with renal disease and seizures may also be necessary. Speech therapy and special education in the later development may also be used as management.
The cornerstone of treatment is administration of free water to correct the relative water deficit. Water can be replaced orally or intravenously. Water alone cannot be administered intravenously (because of osmolarity issue), but rather can be given with addition to dextrose or saline infusion solutions. However, overly rapid correction of hypernatremia is potentially very dangerous. The body (in particular the brain) adapts to the higher sodium concentration. Rapidly lowering the sodium concentration with free water, once this adaptation has occurred, causes water to flow into brain cells and causes them to swell. This can lead to cerebral edema, potentially resulting in seizures, permanent brain damage, or death. Therefore, significant hypernatremia should be treated carefully by a physician or other medical professional with experience in treatment of electrolyte imbalance, specific treatment like ACE inhibitors in heart failure and corticosteroids in nephropathy also can be used.
There is no cure for Alström syndrome; however, there are treatment aims to reduce the symptoms and prevent further complications. Some of these treatment aims include:
- Corrective lenses: tinted lenses that help with the sensitivity from bright lights. The patients may have to adapt to reading in Braille, use adaptive equipment, mobility aids, and adaptive computing skills.
- Education: patients with Alström syndrome suffering from intellectual disabilities must have access to education. They must be able to receive free and appropriate education. Some Alström syndrome patients are educated in normal classrooms. Other patients have to take special education classes or attend to specialized schools that are prepared to teach children with disabilities. Staff members from schools have to consult with patient's parents or caregivers in order to design an education plan based on the child's needs. In addition, the school may document the progress of the child in order to confirm that the child's needs are being met.
- Hearing aids: the battery-operated devices are available in three styles: behind the ear, in the ear, and inside the ear canal. Behind the ear aims for mild-to-profound hearing loss. In the ear aims for mild to severe hearing loss. Lastly, the canal device is aimed for mild to moderately severe hearing loss. Patients that have severe hearing loss may benefit from a cochlear implant.
- Diet: an appropriate and healthy diet is necessary for individuals with Alström syndrome because it could potentially decreases chances of obesity or diabetes.
- Occupational therapy: the therapist helps the child learn skills to help him or her perform basic daily tasks like eating, getting dressed, and communicating with others.
- Physical Activity: exercising reduces chances of being obese and helping control blood sugar levels.
- Dialysis: helps restore filtering function. With hemodialysis, a patient's blood circulates into an external filter and clean. The filtered blood is then returned into the body. With peritoneal dialysis, fluid containing dextrose is introduced into the abdomen by a tube. The solution then absorbs the wastes into the body and is then removed.
- Transplantation: patients that endure a kidney failure may undergo a kidney transplantation.
- Surgery: if the patient endures severe scoliosis or kyphosis, surgery may be required.
Glucocorticoid remediable aldosteronism (GRA), also describable as "aldosterone synthase hyperactivity", is an autosomal dominant disorder in which the increase in aldosterone secretion produced by ACTH is no longer transient.
It is a cause of primary hyperaldosteronism.
There is no causative / curative therapy. Symptomatic medical treatments are focussing on symptoms caused by orthopaedic, dental or cardiac problems. Regarding perioperative / anesthesiological management, recommendations for medical professionals are published at OrphanAnesthesia.
Primary hyperaldosteronism can be mimicked by Liddle syndrome, and by ingestion of licorice and other foods containing glycyrrhizin. In one case report, hypertension and quadriparesis resulted from intoxication with a non-alcoholic pastis (an anise-flavored aperitif containing glycyrrhizinic acid).
This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. The various types of familial hyperaldosteronism have different genetic causes. Familial hyperaldosteronism type I is caused by the abnormal joining together (fusion) of two similar genes called CYP11B1 and CYP11B2, which are located close together on chromosome 8. These genes provide instructions for making two enzymes that are found in the adrenal glands.
The CYP11B1 gene provides instructions for making an enzyme called 11-beta-hydroxylase. This enzyme helps produce hormones called cortisol and corticosterone. The CYP11B2 gene provides instructions for making another enzyme called aldosterone synthase, which helps produce aldosterone. When CYP11B1 and CYP11B2 are abnormally fused together, too much aldosterone synthase is produced. This overproduction causes the adrenal glands to make excess aldosterone, which leads to the signs and symptoms of familial hyperaldosteronism type I.
Familial hyperaldosteronism type III is caused by mutations in the KCNJ5 gene. The KCNJ5 gene provides instructions for making a protein that functions as a potassium channel, which means that it transports positively charged atoms (ions) of potassium into and out of cells. In the adrenal glands, the flow of ions through potassium channels produced from the KCNJ5 gene is thought to help regulate the production of aldosterone. Mutations in the KCNJ5 gene likely result in the production of potassium channels that are less selective, allowing other ions (predominantly sodium) to pass as well. The abnormal ion flow results in the activation of biochemical processes (pathways) that lead to increased aldosterone production, causing the hypertension associated with familial hyperaldosteronism type III.
The genetic cause of familial hyperaldosteronism type II is unknown.
Children with CHARGE syndrome may have a number of life-threatening medical conditions; with advances in medical care, these children can survive and can thrive with the support of a multidisciplinary team of medical professionals. Therapies and education must take into consideration hearing impairment, vision problems, and any others. Early intervention, such as occupational, speech-language, and physical therapy, to improve static posture, ambulation, and self-care skills is important. The intelligence of children with multiple health impairments, such as combined deafblindness, can be underestimated in the absence of early intervention.
The treatment of genetic disorders is an ongoing battle with over 1800 gene therapy clinical trials having been completed, are ongoing, or have been approved worldwide. Despite this, most treatment options revolve around treating the symptoms of the disorders in an attempt to improve patient quality of life.
Gene therapy refers to a form of treatment where a healthy gene is introduced to a patient. This should alleviate the defect caused by a faulty gene or slow the progression of disease. A major obstacle has been the delivery of genes to the appropriate cell, tissue, and organ affected by the disorder. How does one introduce a gene into the potentially trillions of cells which carry the defective copy? This question has been the roadblock between understanding the genetic disorder and correcting the genetic disorder.