Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
No cures for lysosomal storage diseases are known, and treatment is mostly symptomatic, although bone marrow transplantation and enzyme replacement therapy (ERT) have been tried with some success. ERT can minimize symptoms and prevent permanent damage to the body. In addition, umbilical cord blood transplantation is being performed at specialized centers for a number of these diseases. In addition, substrate reduction therapy, a method used to decrease the production of storage material, is currently being evaluated for some of these diseases. Furthermore, chaperone therapy, a technique used to stabilize the defective enzymes produced by patients, is being examined for certain of these disorders. The experimental technique of gene therapy may offer cures in the future.
Ambroxol has recently been shown to increase activity of the lysosomal enzyme glucocerebrosidase, so it may be a useful therapeutic agent for both Gaucher disease and Parkinson's disease. Ambroxol triggers the secretion of lysosomes from cells by inducing a pH-dependent calcium release from acidic calcium stores. Hence, relieving the cell from accumulating degradation products is a proposed mechanism by which this drug may help.
There are no specific treatments for lipid storage disorders; however, there are some highly effective enzyme replacement therapies for people with type 1 Gaucher disease and some patients with type 3 Gaucher disease. There are other treatments such as the prescription of certain drugs like phenytoin and carbamazepine to treat pain for patients with Fabry disease. Furthermore, gene thereapies and bone marrow transplantation may prove to be effective for certain lipid storage disorders. Diet restrictions do not help prevent the buildup of lipids in the tissues.
On April 27, 2017, the U.S. Food and Drug Administration approved Brineura (cerliponase alfa) as the first specific treatment for NCL. Brineura is enzyme replacement therapy manufactured through recombinant DNA technology. The active ingredient in Brineura, cerliponase alpha, is intended to slow loss of walking ability in symptomatic pediatric patients 3 years of age and older with late infantile neuronal ceroid lipofuscinosis type 2 (CLN2), also known as tripeptidyl peptidase-1 (TPP1) deficiency. Brineura is administered into the cerebrospinal fluid by infusion via a surgically implanted reservoir and catheter in the head (intraventricular access device).
A painkiller available in several European countries, Flupirtine, has been suggested to possibly slow down the progress of NCL, particularly in the juvenile and late infantile forms. No trial has been officially supported in this venue, however. Currently the drug is available to NCL families either from Germany, Duke University Medical Center in Durham, North Carolina, and the Hospital for Sick Children in Toronto, Ontario.
As of 2010 there was no treatment that addressed the cause of Tay–Sachs disease or could slow its progression; people receive supportive care to ease the symptoms and extend life by reducing the chance of contracting infections. Infants are given feeding tubes when they can no longer swallow. In late-onset Tay–Sachs, medication (e.g., lithium for depression) can sometimes control psychiatric symptoms and seizures, although some medications (e.g., tricyclic antidepressants, phenothiazines, haloperidol, and risperidone) are associated with significant adverse effects.
Currently Sandhoff disease does not have any standard treatment and does not have a cure. However, a person suffering from the disease needs proper nutrition, hydration, and maintenance of clear airways. To reduce some symptoms that may occur with Sandhoff disease, the patient may take anticonvulsants to manage seizures or medications to treat respiratory infections, and consume a precise diet consisting of puree foods due to difficulties swallowing. Infants with the disease usually die by the age of 3 due to respiratory infections. The patient must be under constant surveillance because they can suffer from aspiration or lack the ability to change from the passageway to their lungs versus their stomach and their spit travels to the lungs causing bronchopneumonia. The patient also lacks the ability to cough and therefore must undergo a treatment to shake up their body to remove the mucus from the lining of their lungs. Medication is also given to patients to lessen their symptoms including seizures.
Currently the government is testing several treatments including N-butyl-deoxynojirimycin in mice, as well as stem cell treatment in humans and other medical treatments recruiting test patients.
Batten disease is a terminal illness; the FDA has approved Brineura (cerliponase alfa) as a treatment for a specific form of Batten disease. Brineura is the first FDA-approved treatment to slow loss of walking ability (ambulation) in symptomatic pediatric patients 3 years of age and older with late infantile neuronal ceroid lipofuscinosis type 2 (CLN2), also known as tripeptidyl peptidase-1 (TPP1) deficiency. Palliative treatment is symptomatic and supportive.
As of 2010, even with the best care, children with infantile Tay–Sachs disease usually die by the age of 4.
Treatment is depended on the type of glycogen storage disease. E.g. GSD I is typically treated with frequent small meals of carbohydrates and cornstarch to prevent low blood sugar, while other treatments may include allopurinol and human granulocyte colony stimulating factor.
CGL patients have to maintain a strict diet for life, as their excess appetite will cause them to overeat. Carbohydrate intake should be restricted in these patients. To avoid chylomicronemia, CGL patients with hypertriglyceridemia need to have a diet very low in fat. CGL patients also need to avoid total proteins, trans fats, and eat high amounts of soluble fiber to avoid getting high levels of cholesterol in the blood.
Valproic acid is the first line drug choice for reducing generalised seizures and myoclonus. Levetiracetam is also effective for both generalised seizures and myoclonus. Clonazepam and high-dose piracetam can alleviate myoclonus. Phenytoin can worsen seizures and may speed up neurodegeneration; carbamazepine, oxcarbazepine, tiagabine, vigabatrin, gabapentin and pregabalin may worsen myoclonus and myoclonic seizures. Other common medications to treat ULD include topiramate and zonisamide. If an individual with Unverricht–Lundborg disease is particularly sensitive to a certain type of stimulus, it is also beneficial to reduce the patient's exposure to that stimulus in order to reduce the likelihood of seizures. Since ULD is progressive and may not get better over time, depression has been documented in many cases, so providing a strong support group of friends, family, and even other individuals with ULD is very beneficial.
Metformin is the main drug used for treatment, as it is normally used for patients with hyperglycemia. Metformin reduces appetite and improves symptoms of hepatic steatosis and polycystic ovary syndrome. Leptin can also be used to reverse insulin resistance and hepatic steatosis, to cause reduced food intake, and decrease blood glucose levels.
While there is no current cure to repair the mutated CSTB gene, several antiepileptic drugs are effective in reducing seizures and helping patients with ULD to manage the symptoms. In addition, new research is being performed to examine the effectiveness of other types of treatments.
Treatment of ALS2-related disorders includes physical therapy and occupational therapy to promote mobility and independence and use of computer technologies and devices to facilitate writing and voice communication.
The majority of patients is initially screened by enzyme assay, which is the most efficient method to arrive at a definitive diagnosis. In some families where the disease-causing mutations are known and in certain genetic isolates, mutation analysis may be performed. In addition, after a diagnosis is made by biochemical means, mutation analysis may be performed for certain disorders.
In June 1987, a phase-I clinical trial was launched at Weill Cornell Medical College of Cornell University to study a gene therapy method for treatment of the signs and symptoms of LINCL. The experimental drug works by delivering a gene transfer vector called AAV2CUhCLN2 to the brain. Although the trial is not matched, randomized, or blinded and lacked a contemporaneous placebo/sham control group, assessment of the primary outcome variable suggests a slowing of progression of LINCL in the treated children.
Researchers believe the neurological deficits common in JNCL could be due to overactive AMPA receptors in the cerebellum. To test this hypothesis, researchers administered AMPA antagonist drugs into affected mice. The motor skills of the affected mice showed significant improvement after the antagonist treatment, which supported the hypothesis that the neurological deficits in JNCL are due to overactive AMPA receptors. This research could eventually help to alleviate neurological deficits of JNCL in humans.
In November 2006, after receiving FDA clearance, neurosurgeon Nathan Selden, pediatrician Bob Steiner, and colleagues at Doernbecher Children's Hospital at Oregon Health and Science University began a clinical study in which purified neural stem cells were injected into the brain of Daniel Kerner, a six-year-old child with Batten disease, who had lost the ability to walk and talk. This patient was the first of six to receive the injection of a stem cell product from StemCells Inc., a Palo Alto biotech company. These are believed to be the first-ever transplants of fetal stem cells into the human brain. By early December, the child had recovered well enough to return home, and some signs of speech returning were reported. Daniel Kerner died on April 12, 2010. The main goal of phase-I clinical trials, however, was to investigate the safety of transplantation. Overall, the phase-I data demonstrated that high doses of human neural stem cells, delivered by a direct transplantation procedure into multiple sites within the brain, followed by 12 months of immunosuppression, were well tolerated by all six patients enrolled in the trial. The patients’ medical, neurological, and neuropsychological conditions, following transplantation, appeared consistent with the normal course of the disease.
Mycophenolate mofetil is being tested to determine its ability to safely slow or halt neurodegeneration. A non-randomised safety and efficacy trial of a gene transfer vector is underway.
A lipid storage disorder (or lipidosis) can be any one of a group of inherited metabolic disorders in which harmful amounts of fats or lipids accumulate in some of the body’s cells and tissues. People with these disorders either do not produce enough of one of the enzymes needed to metabolize and break down lipids or they produce enzymes that do not work properly. Over time, this excessive storage of fats can cause permanent cellular and tissue damage, particularly in the brain, peripheral nervous system, liver, spleen and bone marrow.
Inside cells under normal conditions, lysosomes convert, or metabolize, lipids and proteins into smaller components to provide energy for the body.
Mucolipidosis type I (ML I) or sialidosis is an inherited lysosomal storage disease that results from a deficiency of the enzyme alpha-N -acetyl neuraminidase (sialidase). The lack of this enzyme results in an abnormal accumulation of complex carbohydrates known as mucopolysaccharides, and of fatty substances known as mucolipids. Both of these substances accumulate in bodily tissues.
The GM2 gangliosidoses are a group of three related genetic disorders that result from a deficiency of the enzyme beta-hexosaminidase. This enzyme catalyzes the biodegradation of fatty acid derivatives known as gangliosides. The diseases are better known by their individual names.
Beta-hexosaminidase is a vital hydrolytic enzyme, found in the lysosomes, that breaks down lipids. When beta-hexosaminidase is no longer functioning properly, the lipids accumulate in the nervous tissue of the brain and cause problems. Gangliosides are made and biodegraded rapidly in early life as the brain develops. Except in some rare, late-onset forms, the GM2 gangliosidoses are fatal.
All three disorders are rare in the general population. Tay-Sachs disease has become famous as a public health model because an enzyme assay test for TSD was discovered and developed in the late 1960s and early 1970s, providing one of the first "mass screening" tools in medical genetics. It became a research and public health model for understanding and preventing all autosomal genetic disorders.
Tay-Sachs disease, AB variant, and Sandhoff disease might easily have been defined together as a single disease, because the three disorders are associated with failure of the same metabolic pathway and have the same outcome. Classification and naming for many genetic disorders reflects history, because most diseases were first observed and classified based on biochemistry and pathophysiology before genetic diagnosis was available. However, the three GM2 gangliosidoses were discovered and named separately. Each represents a distinct molecular point of failure in a subunit that is required for activation of the enzyme.
Other diseases that result from a deficiency in the sialidase enzyme are categorized in a broader group known as sialidoses. Because ML I is classified as a sialidosis, it is sometimes referred to as sialidosis type II.
A rarer form of sialidosis – sialidosis type 1– occurs in children and adolescents and is often referred to as the juvenile form of the disorder. Children usually begin to show symptoms during the second decade of life, and myoclonus and cherry-red macules are often the initial symptoms. Patients usually develop seizures and progressive deterioration of coordinated muscular and mental activities.
The most effective anti-epileptic medication for JME is valproic acid (Depakote). Women are often started on alternative medications due to valproic acid's high incidence of fetal malformations. Lamotrigine, levetiracetam, topiramate, and zonisamide are alternative anti-epileptic medications with less frequent incidence of pregnancy related complications, and they are often used first in females of childbearing age. Carbamazepine may aggravate primary generalized seizure disorders such as JME. Treatment is lifelong. Patients should be warned to avoid sleep deprivation.
The GM1 gangliosidoses (or GM1 gangliosidos"i"s) are caused by a deficiency of beta-galactosidase, with resulting abnormal storage of acidic lipid materials in cells of the central and peripheral nervous systems, but particularly in the nerve cells.
GM1 Gangliosidoses are inherited, autosomal recessive sphingolipidoses, resulting from marked deficiency of Acid Beta Galactosidase.
Gangliosidosis contains different types of lipid storage disorders caused by the accumulation of lipids known as gangliosides. There are two distinct genetic causes of the disease. Both are autosomal recessive and affect males and females equally.
Onset of adult GM1 is between ages 3 and 30.
Symptoms include muscle atrophy, neurological complications that are less severe and progress at a slower rate than in other forms of the disorder, corneal clouding in some patients, and dystonia (sustained muscle contractions that cause twisting and repetitive movements or abnormal postures). Angiokeratomas may develop on the lower part of the trunk of the body. Most patients have a normal size liver and spleen.
Prenatal diagnosis is possible by measurement of Acid Beta Galactosidase in cultured amniotic cells.
Tay–Sachs disease is a rare autosomal recessive genetic disorder that causes a progressive deterioration of nerve cells and of mental and physical abilities that begins around six months of age and usually results in death by the age of four. It is the most common of the GM2 gangliosidoses. The disease occurs when harmful quantities of cell membrane gangliosides accumulate in the brain's nerve cells, eventually leading to the premature death of the cells.