Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment for X-linked SCID can be divided into two main groups, the prophylactic treatment (i.e. preventative) and curative treatment. The former attempts to manage the opportunistic infections common to SCID patients and the latter aims at reconstituting healthy T-lymphocyte function.
From the late 60s to early 70s, physicians began using "bubbles", which were plastic enclosures used to house newborns suspected to have SCIDS, immediately after birth. The bubble, a form of isolation, was a sterile environment which meant the infant would avoid infections caused by common and lethal pathogens. On the other hand, prophylactic treatments used today for X-linked SCID are similar to those used to treat other primary immunodeficiencies. There are three types of prophylactic treatments, namely, the use of medication, sterile environments, and intravenous immunoglobulin therapy (IVIG). First, antibiotics or antivirals are administered to control opportunistic infections, such as fluconazole for candidiasis, and acyclovir to prevent herpes virus infection. In addition, the patient can also undergo intravenous immunoglobulin (IVIG) supplementation. Here, a catheter is inserted into the vein and a fluid, containing antibodies normally made by B-cells, is injected into the patient's body. Antibodies, Y-shaped proteins created by plasma cells, recognize and neutralize any pathogens in the body. However, the IVIG is expensive, in terms of time and finance. Therefore, the aforementioned treatments only prevent the infections, and are by no means a cure for X-linked SCID.
Bone marrow transplantation (BMT) is a standard curative procedure and results in a full immune reconstitution, if the treatment is successful. Firstly, a bone marrow transplant requires a human leukocyte antigen (HLA) match between the donor and the recipient. The HLA is distinct from person to person, which means the immune system utilizes the HLA to distinguish self from foreign cells. Furthermore, a BMT can be allogenic or autologous, which means the donor and recipient of bone marrow can be two different people or the same person, respectively. The autologous BMT involves a full HLA match, whereas, the allogenic BMT involves a full or half (haploidentical) HLA match. Particularly, in the allogenic BMT the chances of graft-versus-host-disease occurring is high if the match of the donor and recipient is not close enough. In this case, the T-cells in the donor bone marrow attack the patient's body because the body is foreign to this graft. The depletion of T-cells in the donor tissue and a close HLA match will reduce the chances of graft-versus-host disease occurring. Moreover, patients who received an exact HLA match had normal functioning T-cells in fourteen days. However, those who received a haploidentical HLA match, their T-cells started to function after four months. In addition, the reason BMT is a permanent solution is because the bone marrow contains multipotent hematopoietic stem cells which become common lymphoid or common myeloid progenitors. In particular, the common lymphoid progenitor gives rise to the lymphocytes involved in the immune response (B-cell, T-cell, natural killer cell). Therefore, a BMT will result in a full immune reconstitution but there are aspects of BMT that need to be improved (i.e. GvHD).
Gene therapy is another treatment option which is available only for clinical trials. X-linked SCID is a monogenic disorder, the IL2RG gene is mutated, so gene therapy will replace this mutated gene with a normal one. This will result in a normal functioning gamma chain protein of the interleukin receptor. In order to transfer a functional gene into the target cell, viral or non-viral vectors can be employed. Viral vectors, such as the retrovirus, that incorporate the gene into the genome result in long-term effects. This, coupled with the bone marrow stem cells, has been successful in treating individuals with X-SCID. In one particular trial by Cavazzana-Calvo et al., ten children were treated with gene therapy at infancy for X-SCID. Nine of the ten were cured of X-SCID. However, about three years after treatment, two of the children developed T-cell leukemia due to insertion of the IL2RG gene near the LMO2 gene and thereby activating the LMO2 gene (a known oncogene). A third child developed leukemia within two years of that study being published, likely as a direct result of the therapy. This condition is known as insertional mutagenesis, where the random insertion of a gene interferes with the tumor suppressor gene or stimulates an oncogene. There is currently no approved gene therapy on the market, but there are many clinical trials into which X-SCID patients may enroll. Therefore, research in the field of gene therapy today and in the future is needed to avoid the occurrence of leukemia. In particular, research into the use of insulator and suicide genes is warranted as this may prevent cancer from developing. The insulator gene inhibits the activation of adjacent genes. On the other hand, the suicide gene is stimulated when a tumour begins to form, and this will result in the deactivation of the therapeutic gene. Moreover, the use of restriction enzymes such as the zinc-finger nuclease (ZFN) is being studied. The ZFN allows the researcher to choose the site of gene integration. Vector safety is important in the field of gene therapy, hence vectors that self-inactivate the promoter and enhancer (SIN) and adenoviruses that creates no immune response are prominent areas of research for vector biologists.
The most common treatment for XLA is an intravenous infusion of immunoglobulin (IVIg, human IgG antibodies) every 3–4 weeks, for life. IVIg is a human product extracted and pooled from thousands of blood donations. IVIg does not cure XLA but increases the patient's lifespan and quality of life, by generating passive immunity, and boosting the immune system. With treatment, the number and severity of infections is reduced. With IVIg, XLA patients may live a relatively healthy life. A patient should attempt reaching a state where his IgG blood count exceeds 800 mg/kg. The dose is based on the patient's weight and IgG blood-count.
Muscle injections of immunoglobulin (IMIg) were common before IVIg was prevalent, but are less effective and much more painful; hence, IMIg is now uncommon.Subcutaneous treatment (SCIg) was recently approved by the U.S. Food and Drug Administration (FDA), which is recommended in cases of severe adverse reactions to the IVIg treatment.
Antibiotics are another common supplementary treatment. Local antibiotic treatment (drops, lotions) are preferred over systemic treatment (pills) for long-term treatment, if possible.One of the future prospects of XLA treatment is gene therapy, which could potentially cure XLA. Gene therapy technology is still in its infancy and may cause severe complications such as cancer and even death. Moreover, the long-term success and complications of this treatment are, as yet, unknown.
In terms of treatment for hyper Igm syndrome there is the use of allogeneic hematopoietic cell transplantation. Additionally anti-microbial therapy, use of granulocyte colony-stimulating factor, immunosuppressants, as well as, other treatments may be needed.
X-linked SCID is a known pediatric emergency which primarily affects males. If the appropriate treatment such as intravenous immunoglobulin supplements, medications for treating infections or a bone marrow transplant is not administered, then the prognosis is poor. The patients with X-linked SCID usually die two years after they are born. For this reason, the diagnosis of X-linked SCID needs to be done early to prevent any pathogens from infecting the infant.
However, the patients have a higher chance of survival if the diagnosis of X-linked SCID is done as soon as the baby is born. This involves taking preventative measures to avoid any infections that can cause death. For example, David Vetter had a high chance of having X-linked SCID because his elder sibling had died due to SCID. This allowed the doctors to place David in the bubble and prevented infections. In addition, if X-linked SCID is known to affect a child, then live vaccines should not be administered and this can save the infants life. Vaccines, which are pathogens inserted into the body to create an immune response, can lead to death in infants with X-linked SCID. Moreover, with proper treatments, such as a bone marrow transplant, the prognosis is good. The bone marrow transplant has been successful in treating several patients and resulted in a full immune reconstitution and the patient can live a healthy life. The results of bone marrow transplant are most successful when the closest human leukocyte antigen match has been found. If a close match is not found, however, there is a chance of graft-versus-host-disease which means the donor bone marrow attacks the patient's body. Hence, a close match is required to prevent any complications.
The treatment of primary immunodeficiencies depends foremost on the nature of the abnormality. Somatic treatment of primarily genetic defects is in its infancy. Most treatment is therefore passive and palliative, and falls into two modalities: managing infections and boosting the immune system.
Reduction of exposure to pathogens may be recommended, and in many situations prophylactic antibiotics or antivirals may be advised.
In the case of humoral immune deficiency, immunoglobulin replacement therapy in the form of intravenous immunoglobulin (IVIG) or subcutaneous immunoglobulin (SCIG) may be available.
In cases of autoimmune disorders, immunosuppression therapies like corticosteroids may be prescribed.
Bone marrow transplant may be possible for Severe Combined Immune Deficiency and other severe immunodeficiences.
Virus-specific T-Lymphocytes (VST) therapy is used for patients who have received hematopoietic stem cell transplantation that has proven to be unsuccessful. It is a treatment that has been effective in preventing and treating viral infections after HSCT. VST therapy uses active donor T-cells that are isolated from alloreactive T-cells which have proven immunity against one or more viruses. Such donor T-cells often cause acute graft-versus-host disease (GVHD), a subject of ongoing investigation. VSTs have been produced primarily by ex-vivo cultures and by the expansion of T-lymphocytes after stimulation with viral antigens. This is carried out by using donor-derived antigen-presenting cells. These new methods have reduced culture time to 10–12 days by using specific cytokines from adult donors or virus-naive cord blood. This treatment is far quicker and with a substantially higher success rate than the 3–6 months it takes to carry out HSCT on a patient diagnosed with a primary immunodeficiency. T-lymphocyte therapies are still in the experimental stage; few are even in clinical trials, none have been FDA approved, and availability in clinical practice may be years or even a decade or more away.
The only treatment for Omenn syndrome is chemotherapy followed by a bone marrow transplantation. Without treatment, it is rapidly fatal in infancy.
Treatment in DOCK8 deficiency focuses on preventing and treating infections. Broad-spectrum antibiotics are a common mode of treatment when infection is present, though some infections (like lung abscesses) require surgical treatment. Pneumatocele may be treated with surgery, but the benefit is unclear.
Surgical treatment is also recommended for skin abscesses, along with topical and systemic antibiotics and antifungals.
Long-term treatment with systemic antibiotics, including trimethoprim/sulfamethoxazole, penicillins, and cephalosporins, is effective in preventing skin and lung infections. Other treatments used in DOCK8 deficiency include sodium cromoglycate, which improves white blood cell function, and isotretinoin, which improves skin condition.
Sometimes, Intravenous immunoglobulin is used as a treatment, but its benefits have not been proven. Levamisole is also ineffective. Mixed clinical outcomes have been found with interferon gamma and omalizumab. Though early research on hematopoietic stem cell transplantation was equivocal, later research has shown it to improve immune function. Two patients have been cured by bone marrow transplantation. Cyclosporine A is a current topic of research; preliminary results have shown it to be effective.
Serology (detection on antibodies to a specific pathogen or antigen) is often used to diagnose viral diseases. Because XLA patients lack antibodies, these tests always give a negative result regardless of their real condition. This applies to standard HIV tests. Special blood tests (such as the western blot based test) are required for proper viral diagnosis in XLA patients.
It is not recommended and dangerous for XLA patients to receive live attenuated vaccines such as live polio, or the measles, mumps, rubella (MMR vaccine). Special emphasis is given to avoiding the oral live attenuated SABIN-type polio vaccine that has been reported to cause polio to XLA patients. Furthermore, it is not known if active vaccines in general have any beneficial effect on XLA patients as they lack normal ability to maintain immune memory.
XLA patients are specifically susceptible to viruses of the Enterovirus family, and mostly to: polio virus, coxsackie virus (hand, foot, and mouth disease) and Echoviruses. These may cause severe central nervous system conditions as chronic encephalitis, meningitis and death. An experimental anti-viral agent, pleconaril, is active against picornaviruses. XLA patients, however, are apparently immune to the Epstein-Barr virus (EBV), as they lack mature B cells (and so HLA co-receptors) needed for the viral infection. Patients with XLA are also more likely to have a history of septic arthritis.
It is not known if XLA patients are able to generate an allergic reaction, as they lack functional IgE antibodies.There is no special hazard for XLA patients in dealing with pets or outdoor activities. Unlike in other primary immunodeficiencies XLA patients are at no greater risk for developing autoimmune illnesses.
Agammaglobulinemia (XLA) is similar to the primary immunodeficiency disorder Hypogammaglobulinemia (CVID), and their clinical conditions and treatment are almost identical. However, while XLA is a congenital disorder, with known genetic causes, CVID may occur in adulthood and its causes are not yet understood.
XLA was also historically mistaken as Severe Combined Immunodeficiency (SCID), a much more severe immune deficiency ("Bubble boys").A strain of laboratory mouse, XID, is used to study XLA. These mice have a mutated version of the mouse Btk gene, and exhibit a similar, yet milder, immune deficiency as in XLA.
Treatment is by parenteral administration of gamma globulins, either monthly intravenously, or, more recently, by weekly self-administered hypodermoclysis. In either case, mild allergic reactions (generalized pruritus, urticaria) are common, and are usually manageable with oral diphenhydramine.
Most patients with hyper IgE syndrome are treated with long-term antibiotic therapy to prevent staphylococcal infections. Good skin care is also important in patients with hyper IgE syndrome. High-dose intravenous gamma-globulin has also been suggested for the treatment of severe eczema in patients with HIES and atopic dermatitis.
SCID mice are routinely used as model organisms for research into the basic biology of the immune system, cell transplantation strategies, and the effects of disease on mammalian systems. They have been extensively used as hosts for normal and malignant tissue transplants. In addition, they are useful for testing the safety of new vaccines or therapeutic agents in immunocompromised individuals.
The condition is due to a rare recessive mutation on Chromosome 16 responsible for deficient activity of an enzyme involved in DNA repair (Prkdc or "protein kinase, DNA activated, catalytic polypeptide"). Because V(D)J recombination does not occur, the humoral and cellular immune systems fail to mature. SCID mice, therefore, present with impaired ability to make T or B lymphocytes, or activate some components of the complement system, and cannot efficiently fight infections, nor reject tumors and transplants.
By crossing SCID mice with mice carrying mutations in related genes, such as interleukin-2Rgamma, more efficient immunocompromised strains can be created to further aid research. The degree to which the various components of the immune system are compromised varies according to what other mutations the mice carry along with the SCID mutation.
No treatment is available for most of these disorders. Mannose supplementation relieves the symptoms in PMI-CDG (CDG-Ib) for the most part, even though the hepatic fibrosis may persist. Fucose supplementation has had a partial effect on some SLC35C1-CDG (CDG-IIc or LAD-II) patients.
Hyper IgM syndromes is a group of primary immune deficiency disorders characterized by defective CD40 signaling; "via" B cells affecting class switch recombination (CSR) and somatic hypermutation. Immunoglobulin (Ig) class switch recombination deficiencies are characterized by elevated serum Immunoglobulin M (IgM) levels and a considerable deficiency in Immunoglobulins G (IgG), A (IgA) and E (IgE). As a consequence, people with HIGM have decreased concentrations of serum IgG and IgA and normal or elevated IgM, leading to increased susceptibility to infections.
The severe combined immunodeficiency (SCID) is a severe immunodeficiency genetic disorder that is characterized by the complete inability of the adaptive immune system to mount, coordinate, and sustain an appropriate immune response, usually due to absent or atypical T and B lymphocytes. In humans, SCID is colloquially known as "bubble boy" disease, as victims may require complete clinical isolation to prevent lethal infection from environmental microbes.
Several forms of SCID occur in animal species. Not all forms of SCID have the same cause; different genes and modes of inheritance have been implicated in different species.
Omenn syndrome is an autosomal recessive severe combined immunodeficiency associated with hypomorphic missense mutations in immunologically relevant genes of T-cells (and B-cells) such as recombination activating genes (RAG1 and RAG2), IL-7 Receptor α gene (IL7Rα), DCLRE1C-Artemis, RMRP-CHH, DNA-Ligase IV, common gamma chain, WHN-FOXN1, ZAP-70 and complete DiGeorge anomaly (DiGeorge Syndrome; CHARGE).
CD25 deficiency or interleukin 2 receptor alpha deficiency is an immunodeficiency disorder associated with mutations in the interleukin 2 receptor alpha (CD25) (IL2RA) gene. The mutations cause expression of a defective α chain or complete absence thereof, an essential part of high-affinity interleukin-2 (IL-2) receptors. The result is a syndrome described as IPEX-like or a SCID.
In one patient, deficiency of CD25 on CD4+ lymphocytes caused significantly impaired sensitivity to IL-2. This was demonstrated by a lack of measurable response in anti-inflammatory interleukin-10 (IL-10) secretion to low-dose IL-2 incubation. Greatly reduced IL-10 secretion compared to healthy humans results in a syndrome comparable to IPEX syndrome, a type of autoimmunity which is caused by FoxP3 transcription factor dysfunction. In addition to IPEX-like symptoms, CD25 deficiency increases susceptibility to viral infections and possibly fungal and bacterial infections.
As IL-2 is an important inducer of lymphocyte proliferation, the absence of highly sensitive IL-2 receptors may also significantly hinder activation and clonal expansion of CD8+ and CD4+ lymphocytes and NK cells. One case also reported the absence of CD1, a MHC-like glycoprotein involved in the presentation of lipid antigens to T cells, in a CD25 deficient patient. Furthermore, chronic upregulation of anti-apoptotic Bcl-2 in thymocytes was also described possibly allowing autoreactive T cells to escape deletion.
In general, treatment for acquired partial lipodystrophy is limited to cosmetic, dietary, or medical options. Currently, no effective treatment exists to halt its progression.
Diet therapy has been shown to be of some value in the control of metabolic problems. The use of small, frequent feedings and partial substitution of medium-chain triglycerides for polyunsaturated fats appears to be beneficial.
Plastic surgery with implants of monolithic silicon rubber for correction of the deficient soft tissue of the face has been shown to be effective. False teeth may be useful in some cases for cosmetic reasons. Long-term treatment usually involves therapy for kidney and endocrine dysfunction.
Data on medications for APL are very limited. Thiazolidinediones have been used in the management of various types of lipodystrophies. They bind to peroxisome proliferator-activator receptor gamma (PPAR-gamma), which stimulates the transcription of genes responsible for growth and differentiation of adipocytes. A single report has suggested a beneficial effect from treatment with rosiglitazone on fat distribution in acquired partial lipodystrophy; however, preferential fat gain was in the lower body.
Direct drug therapy is administered according to the associated condition. Membranoproliferative glomerulonephritis and the presence of renal dysfunction largely determine the prognosis of acquired partial lipodystrophy. Standard guidelines for the management of renal disease should be followed. The course of membranoproliferative glomerulonephritis in acquired partial lipodystrophy has not been significantly altered by treatment with corticosteroids or cytotoxic medications. Recurrent bacterial infections, if severe, might be managed with prophylactic antibiotics.
Children with DOCK8 deficiency do not tend to live long; sepsis is a common cause of death at a young age. CNS and vascular complications are other common causes of death.
In terms of treatment for short-chain acyl-CoA dehydrogenase deficiency, some individuals may not need treatment, while others might follow administration of:
- Riboflavin
- Dextrose
- Anticonvulsants
No cure currently exists; however, gene therapy has been proposed.
Treatment for alpha-thalassemia may consist of blood transfusions, and possible splenectomy; additionally, gallstones may be a problem that would require surgery. Secondary complications from febrile episode should be monitored, and most individuals live without any need for treatment
Additionally, stem cell transplantation should be considered as a treatment (and cure), which is best done in early age. Other options, such as gene therapy, are still being developed.
CDPX1 activity may be inhibited by warfarin because it is believed that ARSE has enzymatic activity in a vitamin K producing biochemical pathway. Vitamin K is also needed for controlling binding of calcium to bone and other tissues within the body.
People with severe thalassemia require medical treatment. A blood transfusion regimen was the first measure effective in prolonging life.
Multiple blood transfusions can result in iron overload. The iron overload related to thalassemia may be treated by chelation therapy with the medications deferoxamine, deferiprone, or deferasirox. These treatments have resulted in improving life expectancy in those with thalassemia major.
Deferoxamine is only effective via daily injections which makes its long-term use more difficult. It has the benefit of being inexpensive and decent long-term safety. Adverse effects are primary skin reactions around the injection site and hearing loss.
Deferasirox has the benefit of being an oral medication. Common side effects include: nausea, vomiting and diarrhea. It however is not effective in everyone and is probably not suitable in those with significant cardiac issues related to iron overload. The cost is also significant.
Deferiprone is a medication that is given by mouth. Nausea, vomiting, and diarrhea are relatively common with its use. It is available in both Europe and the United States. It appears to be the most effective agent when the heart is significantly involved.
There is no evidence from randomized controlled trial to support zinc supplementation in thalassemia.