Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
It has been suggested that a possible method of treatment for histidinemia is through the adoption of a diet that is low in histidine intake. However, the requirement for such dietary restrictions is typically unnecessary for 99% of all cases of histidinemia.
Treatment: There is no treatment or way to reverse the disease. Treatment will focus on the symptoms an individual has, such as seizure medication.
- It is possible that if an individual receives a bone marrow transplant, they could receive healthy bone marrow cells which would produce normal amounts of fucosidase. But there not is enough research to prove this is an effective treatment.
There is no cure for GALT deficiency, in the most severely affected patients, treatment involves a galactose free diet for life. Early identification and implementation of a modified diet greatly improves the outcome for patients. The extent of residual GALT enzyme activity determines the degree of dietary restriction. Patients with higher levels of residual enzyme activity can typically tolerate higher levels of galactose in their diets. As patients get older, dietary restriction is often relaxed. With the increased identification of patients and their improving outcomes, the management of patients with galactosemia in adulthood is still being understood.
After diagnosis, patients are often supplemented with calcium and vitamin D3. Long-term manifestations of the disease including ovarian failure in females, ataxia. and growth delays are not fully understood. Routine monitoring of patients with GALT deficiency includes determining metabolite levels (galactose 1-phosphate in red blood cells and galactitol in urine) to measure the effectiveness of and adherence to dietary therapy, ophthalmologic examination for the detection of cataracts and assessment of speech, with the possibility of speech therapy if developmental verbal dyspraxia is evident.
There is no treatment for MKD. But, the inflammation and the other effects can be reduced to a certain extent.
- IL-1 targeting drugs can be used to reduce the effects of the disorder. Anakinra is antagonist to IL-1 receptors. Anakinra binds the IL-1 receptor, preventing the actions of both IL-1α and IL-1β, and it has been proved to reduce the clinical and biochemical inflammation in MKD. It can effectively decreases the frequency as well as the severity of inflammatory attacks when used on a daily basis. Disadvantages with the usage of this drug are occurrence of painful injection site reaction and as the drug is discontinued in the near future the febrile attacks start. (Examined in a 12-year-old patient).
- Canakinumab is a long acting monoclonal antibody which is directed against IL-1β has shown to be effective in reducing both frequency and severity in patients suffering from mild and severe MKD in case reports and observational case series. It reduces the physiological effects but the biochemical parameter still remain elevated (Galeotti et al. demonstrated that it is more effective than anakinra –considered 6 patients suffering from MKD).
- Anti-TNF therapy might be effective in MKD, but the effect is mostly partial and therapy failure and clinical deterioration have been described frequently in patients on infliximab or etanercept. A beneficial effect of human monoclonal anti-TNFα antibody adalimumab was seen in a small number of MKD patients.
- Most MKD patients are benefited by anti-IL-1 therapy. However, anti-IL-1-resistant disease may also occur. Example. tocilizumab (a humanized monoclonal antibody against the interleukin-6 (IL-6) receptor). This drug is used when the patients are unresponsive towards Anakinra. (Shendi et al. treated a young woman in whom anakinra was ineffective with tocilizumab). It was found that it was effective in reducing the biochemical and clinical inflammation [30].Stoffels et al. observed reduction of frequency and severity of the inflammatory attacks, although after several months of treatment one of these two patients persistently showed mild inflammatory symptoms in the absence of biochemical inflammatory markers.
- A beneficial effect of hematopoietic stem cell transplantation can be used in severe mevalonate kinase deficiency conditions (Improvement of cerebral myelinisation on MRI after allogenic stem cell transplantation was observed in one girl). But, liver transplantation did not influence febrile attacks in this patient.
Currently, purine replacement via S-adenosylmethionine (SAM) supplementation in people with Arts syndrome appears to improve their condition. This suggests that SAM supplementation can alleviate symptoms of PRPS1 deficient patients by replacing purine nucleotides and open new avenues of therapeutic intervention. Other non-clinical treatment options include educational programs tailored to their individual needs. Sensorineural hearing loss has been treated with cochlear implantation with good results. Ataxia and visual impairment from optic atrophy are treated in a routine manner. Routine immunizations against common childhood infections and annual influenza immunization can also help prevent any secondary infections from occurring.
Regular neuropsychological, audiologic, and ophthalmologic examinations are also recommended.
Carrier testing for at-risk relatives and prenatal testing for pregnancies at increased risk are possible if the disease-causing mutation in the family is known.
The primary treatment for type 1 tyrosinemia is nitisinone (Orfadin) and restriction of tyrosine in the diet. Nitisinone inhibits the conversion of 4-OH phenylpyruvate to homogentisic acid by 4-Hydroxyphenylpyruvate dioxygenase, the second step in tyrosine degradation. By inhibiting this enzyme, the accumulation of the fumarylacetoacetate is prevented. Previously, liver transplantation was the primary treatment option and is still used in patients in whom nitisinone fails.
The prognosis of this condition is generally considered good with the appropriate treatment. Management of Legius syndrome is done via the following:
- Physical therapy
- Speech therapy
- Pharmacologic therapy(e.g.Methylphenidate AHHD)
Histidinemia, also referred to as histidinuria, is a rare autosomal recessive metabolic disorder caused by a deficiency of the enzyme histidase. Histidase is needed for the metabolism of the amino acid histidine. Although originally thought to be linked to multiple developmental disorders histidinemia is now accepted as a relatively benign disorder, leading to a reduction in the prevalence of neonatal screening procedures.
Treatment of lung disease may include bronchodilators, inhaled steroids, and when infections occur antibiotics. Intravenous infusions of the A1AT protein or in severe disease lung transplantation may also be recommended. In those with severe liver disease liver transplantation may be an option. Avoiding smoking and vaccination for influenza, pneumococcus, and hepatitis is also recommended.
The treatment of primary immunodeficiencies depends foremost on the nature of the abnormality. Somatic treatment of primarily genetic defects is in its infancy. Most treatment is therefore passive and palliative, and falls into two modalities: managing infections and boosting the immune system.
Reduction of exposure to pathogens may be recommended, and in many situations prophylactic antibiotics or antivirals may be advised.
In the case of humoral immune deficiency, immunoglobulin replacement therapy in the form of intravenous immunoglobulin (IVIG) or subcutaneous immunoglobulin (SCIG) may be available.
In cases of autoimmune disorders, immunosuppression therapies like corticosteroids may be prescribed.
People with lung disease due to A1AD may receive intravenous infusions of alpha-1 antitrypsin, derived from donated human plasma. This augmentation therapy is thought to arrest the course of the disease and halt any further damage to the lungs. Long-term studies of the effectiveness of A1AT replacement therapy are not available. It is currently recommended that patients begin augmentation therapy only after the onset of emphysema symptoms.
As of 2015 there are four IV augmentation therapy manufacturers in the United States, Canada, and several European countries. Intravenous (IV) therapies are the standard mode of augmentation therapy delivery. Researchers are exploring inhaled therapies. IV augmentation therapies are manufactured by the following companies and have been shown to be clinically identical to one another in terms of dosage and efficacy.
Augmentation therapy is not appropriate for people with liver disease; treatment of A1AD-related liver damage focuses on alleviating the symptoms of the disease. In severe cases, liver transplantation may be necessary.
Initial treatment is supportive, with the use of agents to treat cholestasis and pruritus, including the following:
- Ursodeoxycholic acid
- Cholestyramine
- Rifampin
- Naloxone, in refractory cases
The partial external biliary diversion (PEBD) procedure is a surgical approach that diverts bile from the gallbladder externally into an ileostomy bag.
Patients should be supplemented with fat-soluble vitamins, and occasionally medium-chain triglycerides in order to improve growth.
When liver synthetic dysfunction is significant, patients should be listed for transplantation. Family members should be tested for PFIC mutations, in order to determine risk of transmission.
Aminoacylase 1 deficiency is a rare inborn error of metabolism. To date only 21 cases have been described.
In terms of treatment a 2013 review indicates that colchicine can be used for DIRA. Additionally there are several other management options such as anakinra, which blocks naturally occurring IL-1, this according to a 2016 pediatric textbook.
Bone marrow transplant may be possible for Severe Combined Immune Deficiency and other severe immunodeficiences.
Virus-specific T-Lymphocytes (VST) therapy is used for patients who have received hematopoietic stem cell transplantation that has proven to be unsuccessful. It is a treatment that has been effective in preventing and treating viral infections after HSCT. VST therapy uses active donor T-cells that are isolated from alloreactive T-cells which have proven immunity against one or more viruses. Such donor T-cells often cause acute graft-versus-host disease (GVHD), a subject of ongoing investigation. VSTs have been produced primarily by ex-vivo cultures and by the expansion of T-lymphocytes after stimulation with viral antigens. This is carried out by using donor-derived antigen-presenting cells. These new methods have reduced culture time to 10–12 days by using specific cytokines from adult donors or virus-naive cord blood. This treatment is far quicker and with a substantially higher success rate than the 3–6 months it takes to carry out HSCT on a patient diagnosed with a primary immunodeficiency. T-lymphocyte therapies are still in the experimental stage; few are even in clinical trials, none have been FDA approved, and availability in clinical practice may be years or even a decade or more away.
Galactose-1-phosphate uridylyltransferase deficiency, also called galactosemia type 1, classic galactosemia or GALT deficiency, is the most common type of galactosemia, an inborn error of galactose metabolism, caused by a deficiency of the enzyme galactose-1-phosphate uridylyltransferase. It is an autosomal recessive metabolic disorder that can cause liver disease and death if untreated. Treatment of galactosemia is most successful if initiated early and includes dietary restriction of lactose intake. Because early intervention is key, galactosemia is included in newborn screening programs in many areas. On initial screening, which often involves measuring the concentration of galactose in blood, classic galactosemia may be indistinguishable from other inborn errors of galactose metabolism, including galactokinase deficiency and galactose epimerase deficiency. Further analysis of metabolites and enzyme activities are needed to identify the specific metabolic error.
Fucosidosis is a rare lysosomal storage disorder in which the FUCA1 gene experiences mutations that severely reduce or stop the activity of the alpha-L-fucosidase enzyme. The result is a buildup of complex sugars in parts of the body, which leads to death.
Fucosidosis is one of nine identified glycoprotein storage diseases. The gene encoding the alpha-fucosidase, FUCA 1, was found to be located to the short arm of chromosome 1p36 - p34, by Carrit and co-workers, in 1982.
Several approaches have been taken to address tumor hypoxia. Some companies tried to develop drugs that are activated in hypoxic environments (Novacea, Inc. Proacta, Inc, and Threshold Pharmaceuticals, Inc), while others are currently seeking to reduce tumor hypoxia (Diffusion Pharmaceuticals, Inc. and NuvOx Pharma, LLC).
Several companies have tried to develop drugs that are activated in hypoxic environments. These drug candidates target levels of hypoxia that are common in tumors but are rare in normal tissues. The hypoxic zones of tumors generally evade traditional chemotherapeutic agents and ultimately contribute to relapse. In the literature, hypoxia has been demonstrated to be associated with a worse prognosis, making it a determinant of cancer progression and therapeutic response. Several review articles summarize the current status of hypoxic cytotoxins (hypoxia activated prodrugs). Companies that have tried drugs that are activated in hypoxic environments included Novacea, Inc. Proacta, and Threshold Pharmaceuticals. Novacea Inc discontinued development of its hypoxia activated drug. Proacta’s drug PR610 failed a Phase I clinical trial due to toxicity. Threshold Pharmaceuticals discontinued the hypxia activated prodrug, TH-302, after Phase III trials failed to show statistically significant overall survival.
Niacinamide, the active form of vitamin B, acts as a chemo- and radio-sensitizing agent by enhancing tumor blood flow, thereby reducing tumor hypoxia. Niacinamide also inhibits poly(ADP-ribose) polymerases (PARP-1), enzymes involved in the rejoining of DNA strand breaks induced by radiation or chemotherapy. As of August 2016, no clinical trials appear to be in progress for this indication.
Another approach to the treatment of tumor hypoxia is the use of an oxygen diffusion-enhancing compound to reoxygenate the hypoxic zones of tumors. The developer of oxygen diffusion-enhancing compounds, Diffusion Pharmaceuticals, tested its lead compound, trans sodium crocetinate (TSC), in a Phase II clinical trial in 59 patients newly diagnosed with glioblastoma multiforme. The results of the Phase II showed that 36% of the full-dose TSC patients were alive at 2 years, compared with historical survival values ranging from 27% to 30% for the standard of care. The main endpoint of the trial was survival at two years, not overall survival.
Another drug in development that is designed to reduce tumor hypoxia is NuvOx Pharma’s NVX-108. NVX-108 is a formulation of the perfluorocarbon, dodecafluoropentane (DDFPe). NVX-108 is injected intravenously, flows through the lungs and picks up oxygen, then flows through the arteries and releases oxygen in the precense of hypoxic tissue. A Phase Ib/II clinical trial is in progress for newly diagnosed glioblastoma multiforme. Early results have shown reversal of tumor hypoxia, and the trial continues to progress.
There is no treatment at this time to promote bone growth in chondrodystrophy patients. Certain types of growth hormone seem to increase the rate of growth during the first year of life/treatment, but have no substantial effect in adult patients. Only a few surgical centers in the world perform, experimentally, leg and arm lengthening procedures. Most common therapies are found in seeking help from: family physicians, pediatrics, internists, endocrinologists, geneticists, orthopedists and neurologists.
The clinical picture is heterogeneous and includes motor delay, seizures, moderate to severe mental retardation, absent speech, growth delay, muscular hypotonia and autistic features.
Bioreductive prodrugs play a significant part in dealing with these kinds of cells: they can kill the oxygen-deficient tumor cells selectively as hypoxia-activated prodrugs. Example drugs include Tirapazamine and Evofosfamide. The study of tumors in such conditions was pioneered by Dr L. H. Gray.
Arts syndrome is a rare metabolic disorder that causes serious neurological problems in males due to a malfunction of the PRPP synthetase 1 enzyme. Arts Syndrome is part of a spectrum of PRPS-1 related disorders with reduced activity of the enzyme that includes Charcot–Marie–Tooth disease and X-linked non-syndromic sensorineural deafness.
Type 1 tyrosinemia, also known as hepatorenal tyrosinemia or tyrosinosis, is the most severe form of tyrosinemia, a buildup of too much of the amino acid tyrosine in the blood and tissues due to an inability to metabolize it. It is caused by a deficiency of the enzyme fumarylacetoacetate hydrolase.
Mevalonate kinase deficiency, also called mevalonic aciduria and hyper immunoglobin D syndrome is an autosomal recessive metabolic disorder that disrupts the biosynthesis of cholesterol and isoprenoids.
It is characterized by an elevated level of immunoglobin D in the blood.
The enzyme is involved in biosynthesis of cholesterols and isoprenoids. The enzyme is necessary for the conversion of mevalonate to mevalonate-5-phosphate in the presence of Mg2+ [Harper’s biochemistry manual]. Mevalonate kinase deficiency causes the accumulation of mevalonate in urine and hence the activity of the enzyme is again reduced Mevalonate kinase deficiency. It was first described as HIDS in 1984.
Orofaciodigital syndrome type 1 can be treated with reconstructive surgery or the affected parts of the body. Surgery of cleft palate, tongue nodules, additional teeth, accessory frenulae, and orthodontia for malocclusion. Routine treatment for patients with renal disease and seizures may also be necessary. Speech therapy and special education in the later development may also be used as management.