Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Oral rehydration solution (ORS) (a slightly sweetened and salty water) can be used to prevent dehydration. Standard home solutions such as salted rice water, salted yogurt drinks, vegetable and chicken soups with salt can be given. Home solutions such as water in which cereal has been cooked, unsalted soup, green coconut water, weak tea (unsweetened), and unsweetened fresh fruit juices can have from half a teaspoon to full teaspoon of salt (from one-and-a-half to three grams) added per liter. Clean plain water can also be one of several fluids given. There are commercial solutions such as Pedialyte, and relief agencies such as UNICEF widely distribute packets of salts and sugar. A WHO publication for physicians recommends a homemade ORS consisting of one liter water with one teaspoon salt (3 grams) and two tablespoons sugar (18 grams) added (approximately the "taste of tears"). Rehydration Project recommends adding the same amount of sugar but only one-half a teaspoon of salt, stating that this more dilute approach is less risky with very little loss of effectiveness. Both agree that drinks with too much sugar or salt can make dehydration worse.
Appropriate amounts of supplemental zinc and potassium should be added if available. But the availability of these should not delay rehydration. As WHO points out, the most important thing is to begin preventing dehydration as early as possible. In another example of prompt ORS hopefully preventing dehydration, CDC recommends for the treatment of cholera continuing to give Oral Rehydration Solution during travel to medical treatment.
Vomiting often occurs during the first hour or two of treatment with ORS, especially if a child drinks the solution too quickly, but this seldom prevents successful rehydration since most of the fluid is still absorbed. WHO recommends that if a child vomits, to wait five or ten minutes and then start to give the solution again more slowly.
Drinks especially high in simple sugars, such as soft drinks and fruit juices, are not recommended in children under 5 years of age as they may "increase" dehydration. A too rich solution in the gut draws water from the rest of the body, just as if the person were to drink sea water. Plain water may be used if more specific and effective ORT preparations are unavailable or are not palatable. Additionally, a mix of both plain water and drinks perhaps too rich in sugar and salt can alternatively be given to the same person, with the goal of providing a medium amount of sodium overall. A nasogastric tube can be used in young children to administer fluids if warranted.
In many cases of diarrhea, replacing lost fluid and salts is the only treatment needed. This is usually by mouth – oral rehydration therapy – or, in severe cases, intravenously. Diet restrictions such as the BRAT diet are no longer recommended. Research does not support the limiting of milk to children as doing so has no effect on duration of diarrhea. To the contrary, WHO recommends that children with diarrhea continue to eat as sufficient nutrients are usually still absorbed to support continued growth and weight gain, and that continuing to eat also speeds up recovery of normal intestinal functioning. CDC recommends that children and adults with cholera also continue to eat.
Medications such as loperamide (Imodium) and bismuth subsalicylate may be beneficial; however they may be contraindicated in certain situations.
Antiemetic medications may be helpful for treating vomiting in children. Ondansetron has some utility, with a single dose being associated with less need for intravenous fluids, fewer hospitalizations, and decreased vomiting. Metoclopramide might also be helpful. However, the use of ondansetron might possibly be linked to an increased rate of return to hospital in children. The intravenous preparation of ondansetron may be given orally if clinical judgment warrants. Dimenhydrinate, while reducing vomiting, does not appear to have a significant clinical benefit.
Antimotility drugs such as loperamide and diphenoxylate reduce the symptoms of diarrhea by slowing transit time in the gut. They may be taken to slow the frequency of stools, but not enough to stop bowel movements completely, which delays expulsion of the causative organisms from the intestines. They should be avoided in patients with fever, bloody diarrhea, and possible inflammatory diarrhea. Adverse reactions may include nausea, vomiting, abdominal pain, hives or rash, and loss of appetite. Antimotility agents should not, as a rule, be taken by children under age two.
Gastroenteritis is usually an acute and self-limiting disease that does not require medication. The preferred treatment in those with mild to moderate dehydration is oral rehydration therapy (ORT). For children at risk of dehydration from vomiting, taking a single dose of the anti vomiting medication metoclopramide or ondansetron, may be helpful, and butylscopolamine is useful in treating abdominal pain.
If diarrhea becomes severe (typically defined as three or more loose stools in an eight-hour period), especially if associated with nausea, vomiting, abdominal cramps, fever, or blood in stools, medical treatment should be sought. Such patients may benefit from antimicrobial therapy. A 2000 literature review found that antibiotic treatment shortens the duration and severity of TD; most reported side effects were minor, or resolved on stopping the antibiotic.
Fluoroquinolone antibiotics are the drugs of choice. Trimethoprim–sulfamethoxazole and doxycycline are no longer recommended because of high levels of resistance to these agents. Antibiotics are typically given for three to five days, but single doses of azithromycin or levofloxacin have been used. Rifaximin is approved in the U.S. for treatment of TD caused by ETEC. If diarrhea persists despite therapy, travelers should be evaluated for bacterial strains resistant to the prescribed antibiotic, possible viral or parasitic infections, bacterial or amoebic dysentery, "Giardia", helminths, or cholera.
Dysentery is managed by maintaining fluids by using oral rehydration therapy. If this treatment cannot be adequately maintained due to vomiting or the profuseness of diarrhea, hospital admission may be required for intravenous fluid replacement. In ideal situations, no antimicrobial therapy should be administered until microbiological microscopy and culture studies have established the specific infection involved. When laboratory services are not available, it may be necessary to administer a combination of drugs, including an amoebicidal drug to kill the parasite, and an antibiotic to treat any associated bacterial infection.
If shigellosis is suspected and it is not too severe, letting it run its course may be reasonable — usually less than a week. If the case is severe, antibiotics such as ciprofloxacin or TMP-SMX may be useful. However, many strains of "Shigella" are becoming resistant to common antibiotics, and effective medications are often in short supply in developing countries. If necessary, a doctor may have to reserve antibiotics for those at highest risk for death, including young children, people over 50, and anyone suffering from dehydration or malnutrition.
Amoebic dysentery is often treated with two antimicrobial drug such as metronidazole and paromomycin or iodoquinol.
Alosetron, a selective 5-HT3 antagonist for IBS-D and cilansetron (also a selective 5-HT3 antagonist) were trialed for IBS. Due to severe adverse effects, namely ischemic colitis and severe constipation, they are not available or recommended.
With correct treatment, most cases of amoebic and bacterial dysentery subside within 10 days, and most individuals achieve a full recovery within two to four weeks after beginning proper treatment. If the disease is left untreated, the prognosis varies with the immune status of the individual patient and the severity of disease. Extreme dehydration can delay recovery and significantly raises the risk for serious complications.
For patients who do not adequately respond to dietary fiber, osmotic laxatives such as polyethylene glycol, sorbitol, and lactulose can help avoid "cathartic colon" which has been associated with stimulant laxatives. Among the osmotic laxatives, doses of 17–26 g/d of polyethylene glycol have been well studied. Lubiprostone (Amitiza) is a gastrointestinal agent used for the treatment of idiopathic chronic constipation and constipation-predominant IBS. It is well tolerated in adults, including elderly patients. As of July 20, 2006, lubiprostone had not been studied in pediatric patients. Lubiprostone is a bicyclic fatty acid (prostaglandin E1 derivative) that acts by specifically activating ClC-2 chloride channels on the apical aspect of gastrointestinal epithelial cells, producing a chloride-rich fluid secretion. These secretions soften the stool, increase motility, and promote spontaneous bowel movements. Unlike many laxative products, lubiprostone does not show signs of tolerance, dependency, or altered serum electrolyte concentration.
The body can usually fight off the disease on its own. The most important factor when treating gastroenteritis is the replacement of fluids and electrolytes that are lost because of the diarrhea and vomiting.
Antibiotics will not be effective if the cause of gastroenteritis is a viral infection. Doctors usually do not recommend antidiarrheal medications (e.g., Loperamide) for gastroenteritis because they tend to prolong infection, especially in children.
Parasitic infections are difficult to treat. A number of drugs are available once the condition has been identified. Removing part of the colon or needle aspiration of abscesses in liver may be required.
WAD is typically self-limited, generally resolving without specific treatment. Oral rehydration therapy with rehydration salts is often beneficial to replace lost fluids and electrolytes. Clear, disinfected water or other liquids are routinely recommended.
Hikers who develop three or more loose stools in a 24-hour period – especially if associated with nausea, vomiting, abdominal cramps, fever, or blood in stools – should be treated by a doctor and may benefit from antibiotics, usually given for 3–5 days. Alternatively, a single dose azithromycin or levofloxacin may be prescribed. If diarrhea persists despite therapy, travelers should be evaluated and treated for possible parasitic infection.
"Cryptosporidium" can be quite dangerous to patients with compromised immune systems. Alinia (nitazoxanide) is approved by the FDA for treatment of "Cryptosporidium".
Secondary chronic intestinal pseudo-obstruction is managed by treating the underlying condition.
There is no cure for primary chronic intestinal pseudo-obstruction. It is important that nutrition and hydration is maintained, and pain relief is given. Drugs that increase the propulsive force of the intestines have been tried, as have different types of surgery.
Bacterial overgrowth is usually treated with a course of antibiotics although whether antibiotics should be a first line treatment is a matter of debate. Some experts recommend probiotics as first line therapy with antibiotics being reserved as a second line treatment for more severe cases of SIBO. Prokinetic drugs are other options but research in humans is limited. A variety of antibiotics, including tetracycline, amoxicillin-clavulanate, fluoroquinolones, metronidazole, neomycin, cephalexin, trimethoprim-sulfamethoxazole, and nitazoxanide have been used; however, the best evidence is for the use of rifaximin.
A course of one week of antibiotics is usually sufficient to treat the condition. However, if the condition recurs, antibiotics can be given in a cyclical fashion in order to prevent tolerance. For example, antibiotics may be given for a week, followed by three weeks off antibiotics, followed by another week of treatment. Alternatively, the choice of antibiotic used can be cycled.
The condition that predisposed the patient to bacterial overgrowth should also be treated. For example, if the bacterial overgrowth is caused by chronic pancreatitis, the patient should be treated with coated pancreatic enzyme supplements.
Probiotics are bacterial preparations that alter the bacterial flora in the bowel to cause a beneficial effect. Animal research has demonstrated that probiotics have barrier enhancing, antibacterial, immune modulating and anti-inflammatory effects which may have a positive effect in the management of SIBO in humans. "Lactobacillus casei" has been found to be effective in improving breath hydrogen scores after 6 weeks of treatment presumably by suppressing levels of a small intestinal bacterial overgrowth of fermenting bacteria. The multi-strain preparation VSL#3 was found to be effective in suppressing SIBO. "Lactobacillus plantarum", "Lactobacillus acidophilus", and "Lactobacillus casei" have all demonstrated effectiveness in the treatment and management of SIBO. Conversely, "Lactobacillus fermentum" and "Saccharomyces boulardii" have been found to be ineffective. A combination of "Lactobacillus plantarum" and "Lactobacillus rhamnosus" has been found to be effective in suppressing bacterial overgrowth of abnormal gas producing organisms in the small intestine.
Probiotics are superior to antibiotics in the treatment of SIBO. A combination of probiotic strains has been found to produce better results than therapy with the antibiotic drug metronidazole and probiotics have been found to be effective in treating and preventing secondary lactase deficiency and small intestinal bacteria overgrowth in individuals suffering from post-infectious irritable bowel syndrome. Probiotics taken in uncomplicated cases of SIBO can usually result in the individual becoming symptom free. Probiotic therapy may need to be taken continuously to prevent the return of overgrowth of gas producing bacteria. A study by the probiotic yogurt producer Nestlé found that probiotic yogurt may also be effective in treating SIBO with evidence of reduced inflammation after 4 weeks of treatment.
An elemental diet taken for two weeks is an alternative to antibiotics for eliminating SIBO. An elemental diet works via providing nutrition for the individual while depriving the bacteria of a food source. Additional treatment options include the use of prokinetic drugs such as 5-HT4 receptor agonists or motilin agonists to extend the SIBO free period after treatment with an elemental diet or antibiotics. A diet void of certain foods that feed the bacteria can help alleviate the symptoms. For example, if the symptoms are caused by bacterial overgrowth feeding on indigestible carbohydrate rich foods, following a FODMAP restriction diet may help.
Prucalopride, pyridostigmine, metoclopramide, cisapride, and erythromycin may be used, but they have not been shown to have great efficacy. In such cases, treatment is aimed at managing the complications. Linaclotide is a new drug that received approval from Food and Drug Administration in August 2012 and looks promising in the treatment of chronic intestinal pseudo-obstruction, gastroparesis and inertia coli.
Intestinal stasis, which may lead to bacterial overgrowth and subsequently, diarrhea or malabsorption, is treated with antibiotics.
Nutritional deficiencies are treated by encouraging patients to avoid food high in fat and fibre, which are harder to digest and increase abdominal distention and discomfort, and have small, frequent meals (5–6 per day), focusing on liquids and soft food. Reducing intake of poorly absorbed sugar alcohols may be of benefit. Referral to an accredited dietitian is recommended. If dietary changes are unsuccessful in meeting nutritional requirements and stemming weight loss, enteral nutrition is used. Many patients eventually require parenteral nutrition.
Total parenteral nutrition (TPN) is a form of long-term nutritional treatment needed for patients that have severe pseudoobstruction. After a period of no improvement of intestinal function or motility the decision to start TPN will be made, and the surgical procedure to add a long-term, more permanent IV to administer TPN will occur. Types of IV catheters to be placed will be a PICC line or central line which include mediports, Broviac, or Hickman lines depending on how long the physicians believe the patient will require TPN. Patients that are deemed TPN dependent will require constant checkups to monitor the catheter is working properly, check liver enzyme levels and look for signs of blood infections, as catheter blockage, liver damage, and infections of catheters are the main complications associated with long term TPN use and can result in sepsis and/or additional surgeries if not properly monitored. TPN nutritional feeds are given over a period of several hours to all day infusions, and are a mixture of all the vitamins, minerals, and calories similar to what one would get eating orally daily as well as any other specific nutritional needs the patient has at the moment. TPN format is typically changed depending on loss/gain of weight and bloodwork results, and is specially formulated to meet each individual patient's needs.
Use of octreotide has been described.
Cannabis has long been known to limit or prevent nausea and vomiting from a variety of causes. This has led to extensive investigations that have revealed an important role for cannabinoids and their receptors in the regulation of nausea and emesis. With the discovery of the endocannabinoid system, novel ways to regulate both nausea and vomiting have been discovered that involve the production of endogenous cannabinoids acting centrally. The plant cannabis has been used in clinics for centuries, and has been known to be beneficial in a variety of gastrointestinal diseases, such as emesis, diarrhea, inflammatory bowel disease and intestinal pain. Moreover, modulation of the endogenous cannabinoid system in the gastrointestinal tract may provide a useful therapeutic target for gastrointestinal disorders. While some GI disorders may be controlled by diet and pharmaceutical medications, others are poorly moderated by conventional treatments. Symptoms of GI disorders often include cramping, abdominal pain, inflammation of the lining of the large and/or small intestine, chronic diarrhea, rectal bleeding and weight loss. Patients with these disorders frequently report using cannabis therapeutically.
In a 2012 animal study, cannabichromene was shown to normalize gastrointestinal hypermotility without reducing the transit time. The study notes that this result is of potential clinical interest, as the only drugs available for intestinal dysmotility are often associated with constipation.
The risk of fecal-oral transmission of pathogens that cause diarrhea can be significantly reduced by good hygiene, including washing hands with soap and water after urination and defecation, and washing eating utensils with warm soapy water. Additionally a three-bowl system can be used for washing eating utensils.
Treatment for colitis-X usually does not save the horse. The prognosis is average to poor, and mortality is 90% to 100%. However, treatments are available, and one famous horse that survived colitis-X was U.S. Triple Crown winner Seattle Slew, that survived colitis-X in 1978 and went on to race as a four-year-old.
Large amounts of intravenous fluids are needed to counter the severe dehydration, and electrolyte replacement is often necessary. Flunixin meglumine (Banamine) may help block the effects of toxemia. Mortality rate has been theorized to fall to 75% if treatment is prompt and aggressive, including administration of not only fluids and electrolytes, but also blood plasma, anti-inflammatory and analgesic drugs, and antibiotics. Preventing dehydration is extremely important. Nutrition is also important. Either parenteral or normal feeding can be used to support the stressed metabolism of the sick horse. Finally, the use of probiotics is considered beneficial in the restoration of the normal intestinal flora. The probiotics most often used for this purpose contain "Lactobacillus" and "Bifidobacterium".
Depending on the cause of the inflammation, symptoms may last from one day to more than a week.
Gastroenteritis caused by viruses may last one to two days. Most people recover easily from a short episode of vomiting and diarrhea by drinking clear fluids to replace the fluid that was lost and then gradually progressing to a normal diet. But for others, especially infants and the elderly, the loss of bodily fluid with gastroenteritis can cause dehydration, which can be a life-threatening illness unless it is treated and fluids in the body are replaced.
There is no clinically approved treatment for pouchitis.
First line treatment is usually with antibiotics, specifically with ciprofloxacin and metronidazole. Ampicillin or Piperacillin can also be considered as alternatives to empiric Ciprofloxacin and metronidazole). Administration of metronidazole at a high daily dose of 20 mg/kg can cause symptomatic peripheral neuropathology in up to 85% of patients. This can be a limiting factor in the use of maintenance metronidazole to suppress chronic pouchitis.
Other therapies which have been shown to be effective in randomised clinical trials include probiotic therapy, the application of which usually begins as soon as any antibiotic course is completed so as to re-populate the pouch with beneficial bacteria. Biologics, such as anti-TNF antibodies, may also be useful but the evidence for their use is largely anecdotal. In addition, discussion by patients using related internet forums appears to give evidence of benefits (again, after cessation of antibiotics) from certain diets, such as the Specific Carbohydrate Diet, Paleolithic Diet, and Low FODMAP Diet. In particular, attention has been drawn to the exclusion of complex carbohydrates, as well as other foods with high starch content (such as grains, rice, and potatoes) and certain dairy products including milk and soft cheese.
Symptoms of short bowel syndrome are usually addressed with medication. These include:
- Anti-diarrheal medicine (e.g. loperamide, codeine)
- Vitamin, mineral supplements and L-glutamine powder mixed with water
- H2 blocker and proton pump inhibitors to reduce stomach acid
- Lactase supplement (to improve the bloating and diarrhoea associated with lactose intolerance)
In 2004, the USFDA approved a therapy that reduces the frequency and volume of total parenteral nutrition (TPN), comprising: NutreStore (oral solution of glutamine) and Zorbtive (growth hormone, of recombinant DNA origin, for injection) together with a specialized oral diet. In 2012, an advisory panel to the USFDA voted unanimously to approve for treatment of SBS the agent teduglutide, a glucagon-like peptide-2 analog developed by NPS Pharmaceuticals, who intend to market the agent in the United States under the brandname Gattex. Teduglutide had been previously approved for use in Europe and is marketed under the brand Revestive by Nycomed.
Surgical procedures to lengthen dilated bowel include the Bianchi procedure, where the bowel is cut in half and one end is sewn to the other, and a newer procedure called serial transverse enteroplasty (STEP), where the bowel is cut and stapled in a zigzag pattern. Heung Bae Kim, MD, and Tom Jaksic, MD, both of Children's Hospital Boston, devised the STEP procedure in the early 2000s. The procedure lengthens the bowel of children with SBS and may allow children to avoid the need for intestinal transplantation. As of June 2009, Kim and Jaksic have performed 18 STEP procedures. The Bianchi and STEP procedures are usually performed by pediatric surgeons at quaternary hospitals who specialize in small bowel surgery.
Antisense inhibitors which target the inflammatory process have been used to treat pouchitis in clinical trials. Antisense inhibitors function by binding to messenger RNA (mRNA) produced by a gene and deactivating it, effectively turning that gene "off". Specifically applied to pouchitis, antisense inhibitors would be used to switch off the inflammatory process.
Treatment consists mainly of replacing fluids and salts lost because of diarrhea. Replacement by mouth is satisfactory for most people, but some may need to receive fluids intravenously. Antidiarrheal drugs (such as diphenoxylate or loperamide) may prolong the infection and should not be used.
Bile acid sequestrants are the main agents used to treat bile acid malabsorption. Cholestyramine and colestipol, both in powder form, have been used for many years. Unfortunately many patients find them difficult to tolerate; although the diarrhea may improve, other symptoms such as pain and bloating may worsen. Colesevelam is a tablet and some patients tolerate this more easily. A proof of concept study of the farnesoid X receptor agonist obeticholic acid has shown clinical and biochemical benefit.
As of March 15, 2016, Novartis Pharmaceuticals is conducting a phase II clinical study involving a farnesoid X receptor agonist named LJN452.
Dysentery is initially managed by maintaining fluid intake using oral rehydration therapy. If this treatment cannot be adequately maintained due to vomiting or the profuseness of diarrhea, hospital admission may be required for intravenous fluid replacement. Ideally, no antimicrobial therapy should be administered until microbiological microscopy and culture studies have established the specific infection involved. When laboratory services are not available, it may be necessary to administer a combination of drugs, including an amoebicidal drug to kill the parasite and an antibiotic to treat any associated bacterial infection.
Anyone with bloody diarrhea needs immediate medical help. Treatment often starts with an oral rehydrating solution—water mixed with salt and carbohydrates—to prevent dehydration. (Emergency relief services often distribute inexpensive packets of sugars and mineral salts that can be mixed with clean water and used to restore lifesaving fluids in dehydrated children gravely ill from dysentery.)
If "Shigella" is suspected and it is not too severe, the doctor may recommend letting it run its course—usually less than a week. The patient will be advised to replace fluids lost through diarrhea. If the infection is severe, the doctor may prescribe antibiotics, such as ciprofloxacin or TMP-SMX (Bactrim). Unfortunately, many strains of "Shigella" are becoming resistant to common antibiotics, and effective medications are often in short supply in developing countries. If necessary, a doctor may have to reserve antibiotics for those at highest risk for death, including young children, people over 50, and anyone suffering from dehydration or malnutrition.
No vaccine is available. There are several "Shigella" vaccine candidates in various stages of development that could reduce the incidence of dysentery in endemic countries, as well as in travelers suffering from traveler's diarrhea.
Antibiotics should only be used in severe cases or for certain populations with mild symptoms (elderly, immunocompromised, food service industry workers, child care workers). For "Shigella"-associated diarrhea, antibiotics shorten the length of infection, but they are usually avoided in mild cases because many "Shigella" strains are becoming resistant to common antibiotics. Furthermore, effective medications are often in short supply in developing countries, which carry the majority of the disease burden from "Shigella". Antidiarrheal agents may worsen the sickness, and should be avoided.
In most cases, the disease resolves within four to eight days without antibiotics. Severe infections may last three to six weeks. Antibiotics, such as trimethoprim-sulfamethoxazole, ciprofloxacin may be given when the person is very young or very old, when the disease is severe, or when the risk of the infection spreading to other people is high. Additionally, ampicillin (but not amoxicillin) was effective in treating this disease previously, but now the first choice of drug is pivmecillinam.