Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is no treatment for MKD. But, the inflammation and the other effects can be reduced to a certain extent.
- IL-1 targeting drugs can be used to reduce the effects of the disorder. Anakinra is antagonist to IL-1 receptors. Anakinra binds the IL-1 receptor, preventing the actions of both IL-1α and IL-1β, and it has been proved to reduce the clinical and biochemical inflammation in MKD. It can effectively decreases the frequency as well as the severity of inflammatory attacks when used on a daily basis. Disadvantages with the usage of this drug are occurrence of painful injection site reaction and as the drug is discontinued in the near future the febrile attacks start. (Examined in a 12-year-old patient).
- Canakinumab is a long acting monoclonal antibody which is directed against IL-1β has shown to be effective in reducing both frequency and severity in patients suffering from mild and severe MKD in case reports and observational case series. It reduces the physiological effects but the biochemical parameter still remain elevated (Galeotti et al. demonstrated that it is more effective than anakinra –considered 6 patients suffering from MKD).
- Anti-TNF therapy might be effective in MKD, but the effect is mostly partial and therapy failure and clinical deterioration have been described frequently in patients on infliximab or etanercept. A beneficial effect of human monoclonal anti-TNFα antibody adalimumab was seen in a small number of MKD patients.
- Most MKD patients are benefited by anti-IL-1 therapy. However, anti-IL-1-resistant disease may also occur. Example. tocilizumab (a humanized monoclonal antibody against the interleukin-6 (IL-6) receptor). This drug is used when the patients are unresponsive towards Anakinra. (Shendi et al. treated a young woman in whom anakinra was ineffective with tocilizumab). It was found that it was effective in reducing the biochemical and clinical inflammation [30].Stoffels et al. observed reduction of frequency and severity of the inflammatory attacks, although after several months of treatment one of these two patients persistently showed mild inflammatory symptoms in the absence of biochemical inflammatory markers.
- A beneficial effect of hematopoietic stem cell transplantation can be used in severe mevalonate kinase deficiency conditions (Improvement of cerebral myelinisation on MRI after allogenic stem cell transplantation was observed in one girl). But, liver transplantation did not influence febrile attacks in this patient.
A cure does not exist for I-Cell disease/Mucolipidosis II disease. Treatment is limited to controlling or reducing the symptoms that are associated with this disorder. Nutritional supplements, particularly iron and vitamin B12, are often recommended for individuals with I-Cell disease. Physical therapy to improve motor delays and speech therapy to improve language acquisition are treatment options. Surgery can remove the thin layer of corneal clouding to temporarily improve the complication. It is possible that bone marrow transplant may be helpful in delaying or correcting the neurological deterioration that occurs with I-Cell disease.. Even though there is no existing treatment, the Yash Gandhi Foundation is a 501(c)(3) non-profit organization focused on funding research for I-Cell disease
Treatments include:
- bone marrow transplant
- ADA enzyme in PEG vehicle
Treatment of THB deficiencies consists of THB supplementation (2–20 mg/kg per day) or diet to control blood phenylalanine concentration and replacement therapy with neurotransmitters precursors (L-DOPA and 5-HTP) and supplements of folinic acid in DHPR deficiency.
Tetrahydrobiopterin is available as a tablet for oral administration in the form of "tetrahydrobiopterin dihydrochloride" (BH4*2HCL). BH4*2HCL is FDA approved under the trade name Kuvan. The typical cost of treating a patient with Kuvan is $100,000 per year. BioMarin holds the patent for Kuvan until at least 2024, but Par Pharmaceutical has a right to produce a generic version by 2020. BH4*2HCL is indicated at least in tetrahydrobiopterin deficiency caused by GTPCH deficiency or PTPS deficiency.
No treatment is available for most of these disorders. Mannose supplementation relieves the symptoms in PMI-CDG (CDG-Ib) for the most part, even though the hepatic fibrosis may persist. Fucose supplementation has had a partial effect on some SLC35C1-CDG (CDG-IIc or LAD-II) patients.
At this time there is no treatment for transaldolase deficiency.
There is currently research being done to find treatments for transaldolase deficiency. A study done in 2009 used orally administered N-acetylcysteine on transaldolase deficient mice and it prevented the symptoms associated with the disease. N-acetylcysteine is a precursor for reduced glutathione, which is decreased in transaldolase deficient patients.
On September 1990, the first gene therapy to combat this disease was performed by Dr. William French Anderson on a four-year-old girl, Ashanti DeSilva, at the National Institutes of Health, Bethesda, Maryland, U.S.A.
In April 2016 the Committee for Medicinal Products for Human Use of the European Medicines Agency endorsed and recommended for approval a stem cell gene therapy called Strimvelis, for children with ADA-SCID for whom no matching bone marrow donor is available.
Treatments for Glycerol Kinase Deficiency are targeted to treat the symptoms because there are no permanent treatments for this disease. The main way to treat these symptoms is by using corticosteroids, glucose infusion, or mineralocorticoids. Corticosteroids are steroid hormones that are naturally produced in the adrenal glands. These hormones regulate stress responses, carbohydrate metabolism, blood electrolyte levels, as well as other uses. The mineralocorticoids, such as aldosterone control many electrolyte levels and allow the kidneys to retain sodium. Glucose infusion is coupled with insulin infusion to monitor blood glucose levels and keep them stable.
Due to the multitude of varying symptoms of this disease, there is no specific treatment that will cure this disease altogether. The symptoms can be treated with many different treatments and combinations of medicines to try to find the correct combination to offset the specific symptoms. Everyone with Glycerol Kinase Deficiency has varying degrees of symptoms and thereby requires different medicines to be used in combination to treat the symptoms; however, this disease is not curable and the symptoms can only be managed, not treated fully.
Treatment remains largely supportive. The behavioral disturbances of MPS-III respond poorly to medication. If an early diagnosis is made, bone marrow replacement may be beneficial. Although the missing enzyme can be manufactured and given intravenously, it cannot penetrate the blood–brain barrier and therefore cannot treat the neurological manifestations of the disease.
Along with many other lysosomal storage diseases, MPS-III exists as a model of a monogenetic disease involving the central nervous system.
Several promising therapies are in development. Gene therapy in particular is under Phase I/II clinical trial in France since October 2011 under the leadership of Paris-based biotechnology company Lysogene. Other potential therapies include chemical modification of deficient enzymes to allow them to penetrate the blood–brain barrier, stabilisation of abnormal but active enzyme to prevent its degradation, and implantation of stem cells strongly expressing the missing enzyme. For any future treatment to be successful, it must be administered as early as possible. Currently MPS-III is mainly diagnosed clinically, by which stage it is probably too late for any treatment to be very effective. Neonatal screening programs would provide the earliest possible diagnosis.
The flavonoid genistein decreases the pathological accumulation of glycosaminoglycans in Sanfilippo syndrome. "In vitro", animal studies and clinical experiments suggest that the symptoms of the disease may be alleviated by an adequate dose of genistein. Despite its reported beneficial properties, genistein also has toxic side effects.
Several support and research groups have been established to speed the development of new treatments for Sanfilippo syndrome.
In common forms of MTHFR deficiency, elevated plasma homocysteine levels have sometimes been treated with Vitamin B12 and low doses of folic acid. Although this treatment significantly decreases the serum levels of homocysteine, this treatment is not thought to improve health outcomes.
Due to the ineffectiveness of these treatments, it is no-longer considered clinically useful to test for MTHFR in most cases of thrombophilia or recurrent pregnancy loss.
The treatment goal for individuals affected with OTC deficiency is the avoidance of hyperammonemia. This can be accomplished through a strictly controlled low-protein diet, as well as preventative treatment with nitrogen scavenging agents such as sodium benzoate. The goal is to minimize the nitrogen intake while allowing waste nitrogen to be excreted by alternate pathways. Arginine is typically supplemented as well, in an effort to improve the overall function of the urea cycle. If a hyperammonemic episode occurs, the aim of treatment is to reduce the individual's ammonia levels as soon as possible. In extreme cases, this can involve hemodialysis.
Gene therapy had been considered a possibility for curative treatment for OTC deficiency, and clinical trials were taking place at the University of Pennsylvania in the late 1990s. These were halted after the death of Jesse Gelsinger, a young man taking part in a phase I trial using an adenovirus vector. Currently, the only option for curing OTC deficiency is a liver transplant, which restores normal enzyme activity. A 2005 review of 51 patients with OTC deficiency who underwent liver transplant estimated 5-year survival rates of greater than 90%. Severe cases of OTC deficiency are typically evaluated for liver transplant by 6 months of age.
Standard of care for treatment of CPT II deficiency commonly involves limitations on prolonged strenuous activity and the following dietary stipulations:
- The medium-chain fatty acid triheptanoin appears to be an effective therapy for adult-onset CPT II deficiency.
- Restriction of lipid intake
- Avoidance of fasting situations
- Dietary modifications including replacement of long-chain with medium-chain triglycerides supplemented with L-carnitine
Although patients can receive intensive antibiotherapy and even granulocyte transfusions from healthy donors, the only current curative therapy is the hematopoietic stem cell transplant. However, progress has been made in gene therapy, an active area of research. Both foamyviral and lentiviral vectors expressing the human ITGB2 gene under the control of different promoters have been developed and have been tested so far in preclinical LAD-I models (such as CD18-deficient mice and canine leukocyte adhesion deficiency-affected dogs).
The treatment of primary immunodeficiencies depends foremost on the nature of the abnormality. Somatic treatment of primarily genetic defects is in its infancy. Most treatment is therefore passive and palliative, and falls into two modalities: managing infections and boosting the immune system.
Reduction of exposure to pathogens may be recommended, and in many situations prophylactic antibiotics or antivirals may be advised.
In the case of humoral immune deficiency, immunoglobulin replacement therapy in the form of intravenous immunoglobulin (IVIG) or subcutaneous immunoglobulin (SCIG) may be available.
In cases of autoimmune disorders, immunosuppression therapies like corticosteroids may be prescribed.
Carnitor - an L-carnitine supplement that has shown to improve the body's metabolism in individuals with low L-carnitine levels. It is only useful for Specific fatty-acid metabolism disease.
The primary treatment method for fatty-acid metabolism disorders is dietary modification. It is essential that the blood-glucose levels remain at adequate levels to prevent the body from moving fat to the liver for energy. This involves snacking on low-fat, high-carbohydrate nutrients every 2–6 hours. However, some adults and children can sleep for 8–10 hours through the night without snacking.
Bone marrow transplant may be possible for Severe Combined Immune Deficiency and other severe immunodeficiences.
Virus-specific T-Lymphocytes (VST) therapy is used for patients who have received hematopoietic stem cell transplantation that has proven to be unsuccessful. It is a treatment that has been effective in preventing and treating viral infections after HSCT. VST therapy uses active donor T-cells that are isolated from alloreactive T-cells which have proven immunity against one or more viruses. Such donor T-cells often cause acute graft-versus-host disease (GVHD), a subject of ongoing investigation. VSTs have been produced primarily by ex-vivo cultures and by the expansion of T-lymphocytes after stimulation with viral antigens. This is carried out by using donor-derived antigen-presenting cells. These new methods have reduced culture time to 10–12 days by using specific cytokines from adult donors or virus-naive cord blood. This treatment is far quicker and with a substantially higher success rate than the 3–6 months it takes to carry out HSCT on a patient diagnosed with a primary immunodeficiency. T-lymphocyte therapies are still in the experimental stage; few are even in clinical trials, none have been FDA approved, and availability in clinical practice may be years or even a decade or more away.
Treatment for glycogen storage disease type III may involve a high-protein diet, in order to facilitate gluconeogenesis. Additionally the individual may need:
- IV glucose (if oral route is inadvisable)
- Nutritional specialist
- Vitamin D (for osteoporosis/secondary complication)
- Hepatic transplant (if complication occurs)
The treatment consists of identification of comorbid conditions, preventive measures to reduce the risk of infection, and prompt and effective treatment of infections. Infections in an IgA-deficient person are treated as usual (i.e., with antibiotics). There is no treatment for the underlying disorder.
There is no specific treatment for Farber disease. Corticosteroids may be prescribed to relieve pain. Bone marrow transplants may improve granulomas (small masses of inflamed tissue) on patients with little or no lung or nervous system complications. Older patients may have granulomas surgically reduced or removed.
No cures for lysosomal storage diseases are known, and treatment is mostly symptomatic, although bone marrow transplantation and enzyme replacement therapy (ERT) have been tried with some success. ERT can minimize symptoms and prevent permanent damage to the body. In addition, umbilical cord blood transplantation is being performed at specialized centers for a number of these diseases. In addition, substrate reduction therapy, a method used to decrease the production of storage material, is currently being evaluated for some of these diseases. Furthermore, chaperone therapy, a technique used to stabilize the defective enzymes produced by patients, is being examined for certain of these disorders. The experimental technique of gene therapy may offer cures in the future.
Ambroxol has recently been shown to increase activity of the lysosomal enzyme glucocerebrosidase, so it may be a useful therapeutic agent for both Gaucher disease and Parkinson's disease. Ambroxol triggers the secretion of lysosomes from cells by inducing a pH-dependent calcium release from acidic calcium stores. Hence, relieving the cell from accumulating degradation products is a proposed mechanism by which this drug may help.
There is currently no therapy or cure for MLD in late infantile patients displaying symptoms, or for juvenile and adult onset with advanced symptoms. These patients typically receive clinical treatment focused on pain and symptom management.
Pre-symptomatic late infantile MLD patients, as well as those with juvenile or adult MLD that are either presymptomatic or displaying mild symptoms, can consider bone marrow transplantation (including stem cell transplantation), which may slow down progression of the disease in the central nervous system. However, results in the peripheral nervous system have been less dramatic, and the long-term results of these therapies have been mixed. Recent success has involved stem cells being taken from the bone marrow of children with the disorder and infecting the cells with a retro-virus, replacing the stem cells' mutated gene with the repaired gene before re-injecting it back into the patient where they multiplied. The children by the age of five were all in good condition and going to kindergarten when normally by this age, children with the disease can not even speak.
Several therapy options are currently being investigated using clinical trials primarily in late infantile patients. These therapies include gene therapy, enzyme replacement therapy (ERT), substrate reduction therapy (SRT), and potentially enzyme enhancement therapy (EET).
A team of international researchers and foundations gathered in 2008 to form an international MLD Registry to create and manage a shared repository of knowledge, including the natural history of MLD. This consortium consisted of scientific, academic and industry resources. This registry never became operational.
There is a historical popularity in using intravenous immunoglobulin (IVIG) to treat SIGAD, but the consensus is that there is no evidence that IVIG treats this condition. In cases where a patient presents SIGAD and another condition which is treatable with IVIG, then a physician may treat the other condition with IVIG. The use of IVIG to treat SIGAD without first demonstrating an impairment of specific antibody formation is extremely controversial.
LAL deficiency can be treated with sebelipase alfa is a recombinant form of LAL that was approved in 2015 in the US and EU. The disease of LAL affects < 0.2 in 10,000 people in the EU. According to an estimate by a Barclays analyst, the drug will be priced at about US $375,000 per year.
It is administered once a week via intraveneous infusion in people with rapidly progressing disease in the first six months of life. In people with less aggressive disease, it is given every other week.
Before the drug was approved, treatment of infants was mainly focused on reducing specific complications and was provided in specialized centers. Specific interventions for infants included changing from breast or normal bottle formula to a specialized low fat formula, intravenous feeding, antibiotics for infections, and steroid replacement therapy because of concerns about adrenal function.
Statins were used in people with LAL-D prior to the approval of sebelipase alfa; they helped control cholesterol but did not appear to slow liver damage; liver transplantation was necessary in most patients.
A 2009 study reported results from 36 children who had received a stem cell transplant. At the time of follow-up (median time 62 months), 75% of the children were still alive.