Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Non-surgical treatments of FCED may be used to treat symptoms of early disease. Medical management includes topical hypertonic saline, the use of a hairdryer to dehydrate the precorneal tear film, and therapeutic soft contact lenses. Hypertonic saline draws water out of the cornea through osmosis. When using a hairdryer, the patient is instructed to hold it at an arm's length or directed across the face on a cold setting, to dry out the epithelial blisters. This can be done two or three times a day. Definitive treatment, however, (especially with increased corneal edema) is surgical in the form of corneal transplantation. The most common types of surgery for FCED are Descemet's stripping automated endothelial keratoplasty (DSAEK) and Descemet's membrane endothelial keratoplasty (DMEK), which account for over half of corneal transplants in the United States.
More speculative future directions in the treatment of FED include in-vitro expansion of human corneal endothelial cells for transplantation, artificial corneas (keratoprosthesis) and genetic modification. Surgery where the central diseased endothelium is stripped off but not replaced with donor tissue, with subsequent Rho-Associated Kinase (ROCK) inhibition of endothelial cell division may offer a viable medical treatment.
A greater understanding of FED pathophysiology may assist in the future with the development of treatments to prevent progression of disease. Although much progress has been made in the research and treatment of FED, many questions remain to be answered. The exact causes of illness, the prediction of disease progression and delivery of an accurate prognosis, methods of prevention and effective nonsurgical treatment are all the subject of inquiries that necessitate an answer.
Increased attention must be given to research that can address the most basic questions of how the disease develops: what are the biomolecular pathways implicated in disease, and what genetic or environmental factors contribute to its progression? In addition to shaping our understanding of FED, identification of these factors would be essential for the prevention and management of this condition.
Photic retinopathy generally goes away on its own over time, but there is no specific treatment known to be reliable for speeding recovery. One path sometimes attempted, which has unclear results, is to treat the initial macular edema with corticosteroids.
Because SO is so rarely encountered following eye injury, even when the injured eye is retained, the first choice of treatment may not be enucleation or evisceration, especially if there is a chance that the injured eye may regain some function. Additionally, with current advanced surgical techniques, many eyes once considered nonviable now have a fair prognosis.
However, only if the injured eye has completely lost its vision and has no potential for any visual recovery, prevention of SO is done by enucleation of the injured eye preferably within the first 2 weeks of injury. Evisceration—the removal of the contents of the globe while leaving the sclera and extraocular muscles intact—is easier to perform, offers long-term orbital stability, and is more aesthetically pleasing, i.e., a greater measure of movement of the prosthesis and thus a more natural appearance. There is concern, however, that evisceration may lead to a higher incidence of SO compared to enucleation. Several retrospective studies involving over 3000 eviscerations, however, have failed to identify a single case of SO.
Once SO is developed, Immunosuppressive therapy is the mainstay of treatment. When initiated promptly following injury, it is effective in controlling the inflammation and improving the prognosis. Mild cases may be treated with local application of corticosteroids and pupillary dilators. More severe or progressive cases require high-dose systemic corticosteroids for months to years. Patients who become resistant to corticosteroids or develop side effects of long-term corticosteroid therapy (osteoporosis and pathologic fractures, mental status changes, etc.), may be candidates for therapy with chlorambucil, cyclophosphamide, or ciclosporin.
Patients usually do not require treatment due to benign nature of the disease. In case cataract develops patients generally do well with cataract surgery.
A punctal plug may be inserted into the tear duct by an optometrist or ophthalmologist, decreasing the removal of natural tears from the affected eye.
The use of contact lenses may help prevent the abrasion during blinking lifting off the surface layer and uses thin lenses that are gas permeable to minimise reduced oxygenation. However they need to be used for between 8–26 weeks and such persistent use both incurs frequent follow-up visits and may increase the risk of infections.
Alternatively, under local anaesthetic, the corneal layer may be gently removed with a fine needle, cauterised (heat or laser) or 'spot welding' attempted (again with lasers). The procedures are not guaranteed to work, and in a minority may exacerbate the problem.
Anterior Stromal Puncture with a 20-25 gauge needle is an effective and simple treatment.
An option for minimally invasive and long-term effective therapy is laser phototherapeutic keratectomy. Laser PTK involves the surgical laser treatment of the cornea to selectively ablate cells on the surface layer of the cornea. It is thought that the natural regrowth of cells in the following days are better able to attach to the basement membrane to prevent recurrence of the condition. Laser PTK has been found to be most effective after epithelial debridement for the partial ablation of Bowman's lamella, which performed prior to PTK in the surgical procedure. This is meant to smoothen out the corneal area that the laser PTK will then treat. In some cases, small-spot PTK, which only treats certain areas of the cornea may also be an acceptable alternative.
Amniotic membrane transplantation is an effective and safe procedure for pterygium removal. Amniotic membrane transplantation offers practical alternative to conjunctival auto graft transplantation for extensive pterygium removal. Amniotic membrane transplantation is tissue that is acquired from the innermost layer of the human placenta and has been used to replace and heal damaged mucosal surfaces including successful reconstruction of the ocular surface. It has been used as a surgical material since the 1940s, and has been shown to have a strong anti-adhesive effect.
Using an amniotic graft facilitates epithelialization, and has anti-inflammatory as well as surface rejuvenation properties. Amniotic membrane transplantation can also be fixated to the sclera using sutures, or glue adhesive. Amniotic membrane by itself does not provide an acceptable recurrence rate.
With the eye generally profusely watering, the type of tears being produced have little adhesive property. Water or saline eye drops tend therefore to be ineffective. Rather a 'better quality' of tear is required with higher 'wetting ability' (i.e. greater amount of glycoproteins) and so artificial tears (e.g. viscotears) are applied frequently. Also recommended is Muro 128 5% Ointment (Sodium Chloride Hypertonicity Ophthalmic Ointment, 5%) which is a great relief overnight, it lasts longer than most regular tears and provides protection for those with severe cases.
Nocturnal Lagophthalmos (where one’s eyelids don’t close enough to cover the eye completely during sleep) may be an exacerbating factor, in which case using surgical tape to keep the eye closed at night can help.
Whilst individual episodes may settle within a few hours or days, additional episodes (as the name suggests) will recur at intervals.
Where episodes frequently occur, or there is an underlying disorder, one medical, or three types of surgical curative procedures may be attempted:
use of therapeutic contact lens, controlled puncturing of the surface layer of the eye (Anterior Stromal Puncture) and laser phototherapeutic keratectomy (PTK). These all essentially try to allow the surface epithelium to reestablish with normal binding to the underlying basement membrane, the method chosen depends upon the location & size of the erosion.
Conjunctival auto-grafting is a surgical technique that is an effective and safe procedure for pterygium removal. When the pterygium is removed, the tissue that covers the sclera known as the Tenons layer is also removed. Auto-grafting covers the bare sclera with conjunctival tissue that is surgically removed from an area of healthy conjunctiva. That “self-tissue” is then transplanted to the bare sclera and is fixated using sutures or tissue adhesive.
Early stages may be asymptomatic and may not require any intervention. Initial treatment may include hypertonic eyedrops and ointment to reduce the corneal edema and may offer symptomatic improvement prior to surgical intervention.
Suboptimal vision caused by corneal dystrophy usually requires surgical intervention in the form of corneal transplantation. Penetrating keratoplasty, a common type of corneal transplantation, is commonly performed for extensive corneal dystrophy.
With penetrating keratoplasty (corneal transplant), the long-term results are good to excellent. Recent surgical improvements have been made which have increased the success rate for this procedure. However, recurrence of the disease in the donor graft may happen. Superficial corneal dystrophies do not need a penetrating keratoplasty as the deeper corneal tissue is unaffected, therefore a lamellar keratoplasty may be used instead.
Phototherapeutic keratectomy (PTK) can be used to excise or ablate the abnormal corneal tissue. Patients with superficial corneal opacities are suitable candidates for a this procedure.
Generally speaking, people diagnosed with photic retinopathy recover visual acuity completely within two months, though more severe cases may take longer, or not see complete recovery at all.
The Fuchs spot or sometimes Forster-Fuchs' retinal spot is a degeneration of the macula in case of high myopia. It is named after the two persons who first described it: Ernst Fuchs, who described a pigmented lesion in 1901, and Forster, who described subretinal neovascularisation in 1862. The size of the spots are proportionate to the severity of the pathological myopia.
First signs of a Fuchs spot are distorted sight of straight lines near the fovea, which some days later turn to the typical well-circumscribed patches after absorption of haemorrhage, and a pigmented scar remains. As in macular degeneration, central sight is affected. Atrophy leads to the loss of two or more lines of the Snellen chart.
Some examples of entoptical effects include:
- Floaters or "muscae volitantes" are slowly drifting blobs of varying size, shape, and transparency, which are particularly noticeable when viewing a bright, featureless background (such as the sky) or a point source of diffuse light very close to the eye. They are all shadow images of objects suspended just above the retina. Some may be individual red blood cells swollen due to osmotic pressure or chains of these cells stuck together and diffraction patterns can be seen around these. They may also be "coagula of the proteins of the vitreous gel, to embryonic remnants, or the condensation round the walls of Cloquet's canal". Floaters may collect over the fovea (the center of vision) and therefore be more visible when lying on your back looking upwards.
- Blue field entoptic phenomenon has the appearance of tiny bright dots moving rapidly along squiggly lines in the visual field. It is much more noticeable when viewed against a field of pure blue light and is caused by white blood cells moving in the capillaries in front of the retina. The white cells are larger than the red cells and must deform to fit. As they go through a capillary, a space opens up in front of them and red blood cells pile up behind. This makes the dots of light appear slightly elongated with dark tails.
- Haidinger's brush is a very subtle bowtie or hourglass shaped pattern that is seen when viewing a field with a component of blue light that is plane or circularly polarized and rotating with respect to the observer's eye. If the light is all blue, it will appear as a dark shadow, if the light is full spectrum, it will appear yellow. It is due to the preferential absorption of blue polarized light by pigment molecules in the fovea.
- Purkinje images are the reflections from the anterior and posterior surfaces of the cornea and the anterior and posterior surfaces of the lens. While these first four reflections are not entoptic, Becker described how light can reflect from the posterior surface of the lens and then again from the anterior surface of the cornea to focus a second image on the retina, this one much fainter and inverted. Tscherning referred to this as the sixth image (the fifth image being formed by reflections from the anterior surfaces of the lens and cornea to form an image too far in front of the retina to be visible) and noted it was much fainter and best seen with a relaxed emmetropic eye. In a dark room, with one eye closed and looking ahead with the other eye, move a light back and forth under your gaze – you should see a dimmer image moving in the opposite direction.
- The Purkinje tree is an image of the retinal blood vessels in one's own eye, first described by Purkyně in 1823. It can be seen by shining the beam of a small bright light penlight through the pupil from the periphery of a subject's vision. This results in an image of the light being focused on the periphery of the retina. Light from this spot then casts shadows of the blood vessels (which lie on top of the retina) onto unadapted portions of the retina. Normally the image of the retinal blood vessels is invisible because of adaptation. Unless the light moves, the image disappears within a second or so. If the light is moved at about 1 Hz, adaptation is defeated, and a clear image can be seen indefinitely. The vascular figure is often seen by patients during an ophthalmic examination when the doctor is using an ophthalmoscope. Another way in which the shadows of blood vessels may be seen is by holding a bright light against the eyelid at the corner of the eye. The light penetrates the eye and casts a shadow on the blood vessels as described previously. The light must be jiggled to defeat adaptation. Viewing in both cases is improved in a dark room while looking at a featureless background. This topic is discussed in more detail by Helmholtz.
- Purkinje's blue arcs are associated with the activity of the nerves sending signals from where a spot of light is focussed on the retina near the fovea to the optic disk. Look at the right edge of a small red light in a dark room with your right eye (left eye closed) after dark-accommodating your eye for about 30 seconds and you should see two faint blue arcs starting at the light and heading towards the blind spot. Look at the left edge and you will see a faint blue spike going from the light to the right.
- A phosphene is the perception of light without light actually entering the eye, for instance caused by pressure applied to the closed eyes.
A phenomenon that could be entoptical if the eyelashes are considered to be part of the eye is seeing light diffracted through the eyelashes. The phenomenon appears as one or more light disks crossed by dark blurry lines (the shadows of the lashes), each having fringes of spectral colour. The disk shape is given by the circular aperture of the pupil.
Fuchs' dystrophy, also referred to as Fuchs' corneal endothelial dystrophy (FCED) and Fuchs' endothelial dystrophy (FED), is a slowly progressing corneal dystrophy that usually affects both eyes and is slightly more common in women than in men. Although early signs of Fuchs' dystrophy are sometimes seen in people in their 30s and 40s, the disease rarely affects vision until people reach their 50s and 60s.
The condition was first described by Austrian ophthalmologist Ernst Fuchs (1851–1930), after whom it is named. In 1910, Fuchs first reported 13 cases of central corneal clouding, loss of corneal sensation and the formation of epithelial bullae, or blisters, which he labeled 'dystrophia epithelialis corneae'. It was characterized by late onset, slow progression, decreased visual acuity in the morning, lack of inflammation, diffuse corneal opacity, intense centrally, and roughened epithelium with vesicle-like features.
A shift to the understanding of FCED as primarily a disease of the corneal endothelium resulted after a number of observations in the 1920s. Crystal-like features of the endothelium were noted by Kraupa in 1920, who suggested that the epithelial changes were dependent on the endothelium. Using a slit lamp, Vogt described the excrescences associated with FCD as drop-like in appearance in 1921. In 1924, Graves then provided an extremely detailed explanation of the endothelial elevations visible with slit-lamp biomicroscopy. A patient with unilateral epithelial dystrophy and bilateral endothelial changes was described by the Friedenwalds in 1925; subsequent involvement of the second eye led them to emphasize that endothelial changes preceded epithelial changes. As only a subset of patients with endothelial changes proceeded to epithelial involvement, Graves stated on 19 October 1925 to the New York Academy of Medicine that "Fuchs' epithelial dystrophy may be a very late sequel to severer cases of the deeper affection".
Fuchs heterochromic iridocyclitis (FHI) is a chronic unilateral uveitis appearing with the triad of heterochromia, predisposition to cataract and glaucoma, and keratitic precipitates on the posterior corneal surface. Patients are often asymptomatic and the disease is often discovered through investigation of the cause of the heterochromia or cataract. Neovascularisation (growth of new abnormal vessels) is possible and any eye surgery, such as cataract surgery, can cause bleeding from the fragile vessels in the atrophic iris causing accumulation of blood in anterior chamber of the eye, also known as hyphema.
Several treatments have been attempted for CRAS; however, none show definitive improvement in outcomes. The Undersea and Hyperbaric Medical Society lists Central Retinal Artery Occlusion (CRAO) as an approved indication for Hyperbaric Oxygen Therapy. This a treatment for CRAO that is covered by medical insurance in North America. Other treatments include ocular massage, anterior chamber paracentesis, and inhalation therapy of a mixture of 5% carbon dioxide and 95% oxygen.
Entoptic phenomena (from Greek ἐντός "within" and ὀπτικός "visual") are visual effects whose source is within the eye itself. (Occasionally, these are called entopic phenomena, which is probably a typographical mistake.)
In Helmholtz's words; "Under suitable conditions light falling on the eye may render visible certain objects within the eye itself. These perceptions are called "entoptical"."
The development of accurate and reliable non-invasive ICP measurement methods for VIIP has the potential to benefit many patients on earth who need screening and/or diagnostic ICP measurements, including those with hydrocephalus, intracranial hypertension, intracranial hypotension, and patients with cerebrospinal fluid shunts. Current ICP measurement techniques are invasive and require either a lumbar puncture, insertion of a temporary spinal catheter, insertion of a cranial ICP monitor, or insertion of a needle into a shunt reservoir.
Berlin's edema (commotio retinae) is a common condition caused by blunt injury to the eye. It is characterized by decreased vision in the injured eye a few hours after the injury. Under examination the retina appears opaque and white in colour in the periphery but the blood vessels are normally seen along with "cherry red spot" in the foveal reigion.This whitening is indicative of cell damage, which occurs in the retinal pigment epithelium and outer segment layer of photoreceptors. Damage to the outer segment often results in photoreceptor death through uncertain mechanisms. Usually there is no leakage of fluid and therefore it is not considered a true edema. The choroidal fluorescence in fluorescent angiography is absent. Visual acuity ranges from 20/20 to 20/400.
The prognosis is excellent except in case of complications of choroidal rupture, hemorrhage or pigment epithelial damage, but damage to the macula will result in poorer recovery. The outcome can be worsened in the case of retinal detachment, atrophy or hyperplasia. Visual field defects can occur. In late cases cystoid macular edema sometimes develops which can further lead to macular destruction.
Commotio retinae is usually self limiting and there is no treatment as such. It usually resolves in 3–4 weeks without any complications and sequelae.
Sympathetic ophthalmia (SO) or Sympathetic uveitis is a bilateral diffuse granulomatous uveitis (a kind of inflammation) of both eyes following trauma to one eye. It can leave the patient completely blind. Symptoms may develop from days to several years after a penetrating eye injury.
A blind spot, scotoma, is an obscuration of the visual field. A particular blind spot known as the "physiological blind spot", "blind point", or "punctum caecum" in medical literature, is the place in the visual field that corresponds to the lack of light-detecting photoreceptor cells on the optic disc of the retina where the optic nerve passes through the optic disc. Because there are no cells to detect light on the optic disc, the corresponding part of the field of vision is invisible. Some process in our brains interpolates the blind spot based on surrounding detail and information from the other eye, so we do not normally perceive the blind spot.
Although all vertebrates have this blind spot, cephalopod eyes, which are only superficially similar, do not. In them, the optic nerve approaches the receptors from behind, so it does not create a break in the retina.
The first documented observation of the phenomenon was in the 1660s by Edme Mariotte in France. At the time it was generally thought that the point at which the optic nerve entered the eye should actually be the most sensitive portion of the retina; however, Mariotte's discovery disproved this theory.
The blind spot is located about 12–15° temporally and 1.5° below the horizontal and is roughly 7.5° high and 5.5° wide.
Corneal dystrophy is a group of rare hereditary disorders characterised by bilateral abnormal deposition of substances in the transparent front part of the eye called the cornea.
Disease begins with vesicles that coalesce. There is severe progressing edema and rupture may occur in 24 hours or less.
Keratopathy is common in older people. Keratopathy occurs after cataract surgery, its incidence has decreased since the advent of intraoperative viscoelastic agents that protect the endothelium.
An ectopic cilia is a special type of distichia. It is usually found in younger dogs. Commonly affected breeds include Poodles, Golden Retrievers, and Shih Tzus. The eyelash exits through the conjunctiva of the eyelid facing toward the eye, usually at the middle of the upper eyelid. It can cause intense pain and corneal ulcers. Treatment is surgery or cryotherapy.