Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Non-specific treatments include:
- Non-steroidal anti-inflammatory drugs (NSAIDs): ibuprofen, naproxen or aspirin
- Heat or ice
- A counter-force brace or "elbow strap" to reduce strain at the elbow epicondyle, to limit pain provocation and to protect against further damage.
Before anesthetics and steroids are used, conservative treatment with an occupational therapist may be attempted. Before therapy can commence, treatment such as the common rest, ice, compression and elevation (R.I.C.E.) will typically be used. This will help to decrease the pain and inflammation; rest will alleviate discomfort because golfer's elbow is an overuse injury. The patient can use a tennis elbow splint for compression. A pad can be placed anteromedially on the proximal forearm. The splint is made in 30–45 degrees of elbow flexion. A daytime elbow pad also may be useful, by limiting additional trauma to the nerve.
Therapy will include a variety of exercises for muscle/tendon reconditioning, starting with stretching and gradual strengthening of the flexor-pronator muscles. Strengthening will slowly begin with isometrics and progresses to eccentric exercises helping to extend the range of motion back to where it once was. After the strengthening exercises, it is common for the patient to ice the area.
Simple analgesic medication has a place, as does more specific treatment with oral anti-inflammatory medications (NSAIDs). These will help control pain and any inflammation. A more invasive treatment is the injection into and around the inflamed and tender area of a long-acting glucocorticoid (steroid) agent. After causing an initial exacerbation of symptoms lasting 24 to 48 hours, this may produce an improvement of the condition in some five to seven days.
The ulnar nerve runs in the groove between the medial humeral epicondyle and the olecranon process of the ulna. It is most important that this nerve should not be damaged accidentally in the process of injecting a golfer's elbow.
If all else fails, epicondylar debridement (a surgery) may be effective. The ulnar nerve may also be decompressed surgically.
If the appropriate remediation steps are taken - rest, ice, and rehabilitative exercise and stretching - recovery may follow. Few patients will need to progress to steroid injection, and less than 10% will require surgical intervention.
Although anti-inflammatories are a commonly prescribed treatment for tennis elbow, the evidence for their effect is usually anecdotal with only limited studies showing a benefit. A systematic review found that topical non-steroidal anti-inflammatory drugs (NSAIDs) may improve pain in the short term (up to 4 weeks) but was unable to draw firm conclusions due to methodological issues. Evidence for oral NSAIDs is mixed.
Evidence is poor for long term improvement from injections of any type, whether corticosteroids, botulinum toxin, prolotherapy or other substances. Corticosteroid injection may be effective in the short term however are of little benefit after a year, compared to a wait-and-see approach. A recent randomized control trial comparing the effect of corticosteroid injection, physiotherapy, or a combination of corticosteroid injection and physiotherapy found that patients treated with corticosteroid injection versus placebo had lower complete recovery or improvement at 1 year (Relative risk 0.86). Patients that received corticosteroid injection also had a higher recurrence rate at 1 year versus placebo (54% versus 12%, relative risk 0.23).
Complications from repeated steroid injections include skin problems such as hypopigmentation and fat atrophy leading to indentation of the skin around the injection site. Botulinum toxin type A to paralyze the forearm extensor muscles in those with chronic tennis elbow that has not improved with conservative measures may be viable.
Evidence for the treatment of lateral epicondylitis before 2010 was poor. There were clinical trials addressing many proposed treatments, but the trials were of poor quality.
In some cases, severity of tennis elbow symptoms mend without any treatment, within six to 24 months. Tennis elbow left untreated can lead to chronic pain that degrades quality of daily living.
In the original description by Hume, where the olecranon fractures were not displaced, treatment consisted of closed reduction of the radial head dislocation under general anaesthesia by supination of the forearm. This was followed by immobilisation of the arm in a plaster cast with the elbow flexed at 90° and the forearm in supination for 6 weeks.
Where the olecranon fracture is displaced, open reduction internal fixation is recommended. Once the olecranon has been repaired, closed reduction of the radial head dislocation is usually possible. This is followed by immobilisation with the elbow flexed to 90° and the forearm in the neutral position. The duration of immobilisation depends on clinical assessment of the joint, and mobilisation may be possible after as little as 4 weeks.
Treatment options for distal radius fractures include non-operative management, external fixation, and internal fixation. Indications for each depend on a variety of factors such as patient's age, initial fracture displacement, and metaphyseal and articular alignment, with the ultimate goal to maximize strength, and function in the affected upper extremity. Surgeons use these factors combined with radiologic imaging to predict fracture instability, and functional outcome in order to help decide which approach would be most appropriate. Treatment is often directed to restore normal anatomy to avoid the possibility of malunion, which may cause decreased strength in the hand and wrist. The decision to pursue a specific type of management varies greatly by geography, physician specialty (hand surgeons vs. orthopedic surgeons), and advancements in new technology such as the volar locking plating system.
UCL injuries may or may not require surgery. Non surgical treatment will primarily focus on strengthening the elbow joint to regain strength and stability. First a course of
RICE (Rest, ice, compression, elevation) is typically coupled with NSAIDS (Non-steroidal anti-inflammatory drugs) to help alleviate pain and swelling. When the swelling has subsided, individual exercises or physical therapy may be prescribed to strengthen muscles around the elbow joint to compensate for tearing in the UCL. These may include biceps curls (non resistance and resistance), pronating and supinating the forearm, and grip strengthening exercises, performed with low resistance and moderate repetitions no more than three times a week.
Surgical treatment may help restore the ability to perform the overhand throwing motions most commonly associated with UCL injuries. The reconstructive surgery, generally known as Tommy John surgery, was first performed by Dr. Frank Jobe in 1974 and has modified several times over the past 30 years. The surgery involves an autograft of the palmaris longus tendon (mostly seen as an accessory tendon) or an allograft of tissue from a cadaver or donor. The new tendon is attached by drilling holes in the medial epicondyle of the humerus and the sublime tubercle of the ulna and lacing the tendon through them in a figure eight. The patient may begin physical therapy shortly after. It usually takes about 15 months after the surgery for standard rehabilitation. In study conducted by Dr. Frederick Azar, 78 Tommy John surgeries were performed and analyzed after the surgeries. Of the 78 patients, 8 of them (8.8%) reported complications. Two patients had superficial infections that resolved with oral antibiotics, two patients reported tightness of tenderness at the surgery site, and one had a superficial wound infection at the elbow incision that resolved with oral antibiotics. One patient developed postoperative ulnar nerve damage. Two patients had damages to the posteromedial part of the olecranon and required to have reoperation.
Recent studies have shown that MLB pitchers who undergo Tommy John surgery return to pitch in the MLB 83% of the time and only 3% fail to return to pitch in the MLB or the minor league.
Recently, there has been a recorded increase of Tommy John surgery. The increase is related to the false perception that the surgery improves the stability of the UCL joint. Many athletes believe in this false perception and cause them to lie about their symptoms in hopes to undergo the surgery. In order to combat these rumors, physicians are motivated to educate the public that Tommy John surgeries are only for those who have severe UCL injuries. The surgery will have an insignificant effect if the patient does not have a severe UCL injury.
The tendon chosen is then woven in a figure eight pattern through the humerus and ulna, which holes were first drilled in the bones. After surgery occurs, rehabilitation comes into place and usually takes about a year because a tendon needs time to convert into a ligament.
Treatment of posterolateral corner injuries varies with the location and grade of severity of the injuries. Patients with grade I and II (partial) injuries to the posterolateral corner can usually be managed conservatively. Studies have reported that patients with grade III (complete) injuries do poorly with conservative management and typically will require surgical intervention followed by rehabilitation.
Galeazzi fractures are best treated with open reduction of the radius and the distal radio-ulnar joint. It has been called the "fracture of necessity," because it necessitates open surgical treatment in the adult. Nonsurgical treatment results in persistent or recurrent dislocations of the distal ulna. However, in skeletally immature patients such as children, the fracture is typically treated with closed reduction.
Treatment of this fracture depends on the severity of the fracture. An undisplaced fracture may be treated with a cast alone. A fracture with mild angulation and displacement may require closed reduction. Significant angulation and deformity may require an open reduction and internal fixation. An open fracture will always require surgical intervention.
It is possible for the PCL to heal on its own without surgery when it is in Grades I and II. PCL injuries that are diagnosed in these categories can have their recovery times reduced by performing certain rehabilitative exercises. Fernandez and Pugh(2012) found that following a PCL grade II diagnosis, a treatment that spanned over the course of 8 weeks consisting of chiropractic lumbopelvic manipulation, physiotherapy, and implementing an exercise program that emphasized in eccentric muscle contraction (lunges, 1-leg squats, and trunk stabilization) which proved to be an effective way to recover from the PCL injury. For Grades III and IV, operative surgery is recommended or is usually needed. Grafts is the method when addressing PCL injuries that are in need of operative surgery. With grafts, there are different methods such as the tibial inlay or tunnel method.
In addition, balancing exercises have also been adopted because it has been proven that people with poor balance have more knee injuries than those with good balance. Wobble boards and Bosu balls are very common pieces of equipment used to balance and help prevent knee injuries as long as they are being used with trained personnel. Another possible preventive measure is wearing knee straps to help stabilize the knee and protect it from injury, especially during demanding sports such as football.
Conservative treatment relies on immobilizing the knee in full extension to allow the stretched or torn ligaments to heal. It is imperative that the patient keep the knee immobilized and not bear weight on the joint for 3 to 4 weeks to allow sufficient time for the structures to heal. Following immobilization, the patient can begin exercises to improve range of motion and begin bearing weight on crutches only. The crutches can be discontinued when the patient can walk without limping. Quadriceps strengthening exercises are allowed, but no isolated hamstring exercises should be attempted for 6 – 10 weeks following the injury. If after 10 weeks, pain or instability continue, the patient should be reevaluated for surgical treatment.
In children, the results of early treatment are always good, typically normal or nearly so. If diagnosis is delayed, reconstructive surgery is needed and complications are much more common and results poorer. In adults, the healing is slower and results usually not as good.
Complications of ORIF surgery for Monteggia fractures can include non-union, malunion, nerve palsy and damage, muscle damage, arthritis, tendonitis, infection, stiffness and loss of range of motion, compartment syndrome, audible popping or snapping, deformity, and chronic pain associated with surgical hardware such as pins, screws, and plates. Several surgeries may be needed to correct this type of fracture as it is almost always a very complex fracture that requires a skilled orthopedic surgeon, usually a 'specialist', familiar with this type of injury.
Treatment for brachial plexus injuries includes orthosis/splinting, occupational or physical therapy and, in some cases, surgery. Some brachial plexus injuries may heal without treatment. Many infants improve or recover within 6 months, but those that do not have a very poor outlook and will need further surgery to try to compensate for the nerve deficits. The ability to bend the elbow (biceps function) by the third month of life is considered an indicator of probable recovery, with additional upward movement of the wrist, as well as straightening of thumb and fingers an even stronger indicator of excellent spontaneous improvement. Gentle range of motion exercises performed by parents, accompanied by repeated examinations by a physician, may be all that is necessary for patients with strong indicators of recovery.
The exercises mentioned above can be done to help rehabilitate from mild cases of the injury. However, in more serious brachial plexus injuries surgical interventions can be used. Function can be restored by nerve repairs, nerve replacements, and surgery to remove tumors causing the injury. Another crucial factor to note is that psychological problems can hinder the rehabilitation process due to a lack of motivation from the patient. On top of promoting a lifetime process of physical healing, it is important to not overlook the psychological well-being of a patient. This is due to the possibility of depression or complications with head injuries.
Treatment involves pain medication and immobilization at first; later, physical therapy is used. Ice over the affected area may increase comfort. Movement exercises are begun within at least a week of the injury; with these, fractures with little or no displacement heal without problems. Over 90% of scapular fractures are not significantly displaced; therefore, most of these fractures are best managed without surgery. Fractures of the scapular body with displacement may heal with malunion, but even this may not interfere with movement of the affected shoulder. However, displaced fractures in the scapular processes or in the glenoid do interfere with movement in the affected shoulder if they are not realigned properly. Therefore, while most scapular fractures are managed without surgery, surgical reduction is required for fractures in the neck or glenoid; otherwise motion of the shoulder may be impaired.
There are many treatments to facilitate the process of recovery in people who have brachial plexus injuries. Improvements occur slowly and the rehabilitation process can take up to many years. Many factors should be considered when estimating recovery time, such as initial diagnosis of the injury, severity of the injury, and type of treatments used. Some forms of treatment include nerve grafts, medication, surgical decompression, nerve transfer, physical therapy, and occupational therapy.
Prevention of the condition requires restoration of blood flow after injury and reduction of compartmental pressure on the muscles. Any splints, bandages, or other devices that might be obstructing circulation must be removed. A fasciotomy may be required to reduce pressure in the muscle compartment. If the contracture occurs, surgery to release the fixed tissues may help with the deformity and function of the hand.
The majority of distal radius fractures are treated with conservative non-operative management, which involves immobilization through application of plaster or splint with or without closed reduction. The prevalence of non-operative approach to distal radius fractures is approximately 70%. Non-operative management is indicated for fractures that are undisplaced, or for displaced fractures that are stable following reduction. There are variations in immobilization techniques involving the type of cast, position of immobilization, and the length of time required in the cast.
The length of time in the cast varies with different ages. Children heal more rapidly, but may ignore activity restrictions. Three weeks in a cast and 6 weeks off sports may be appropriate for certain fractures. In adults, the risk of stiffness of the joint increases the longer it is immobilized. If callus is seen on x-ray at 4 weeks, the cast may be replaced by a removable splint. However, many hand surgeons leave the patients in the cast for up to 6 weeks. In general, the x-rays will not show any callus until about a month after the fracture is healed; therefore the cast is removed before the x-rays confirm that it is healed.
During the period of follow-up, it is common practice to repeat x-rays at about 1 week to make sure the position is still acceptable. Further followup is needed to determine when the fracture has healed and when rehabilitation is complete. The critical time during the period of attempted treatment with casting is the first 3 weeks. The swelling will reduce during this time and the fracture can displace. If the displacement becomes unacceptable, closed treatment may need to be abandoned and surgery pursued. More than 3 weeks after injury, the fracture will start to heal and further displacement becomes less likely.
One way to prevent this injury from occurring is to be informed and educated about the risks involved in hurting your wrist and hand. If patients do suffer from median nerve palsy, occupational therapy or wearing a splint can help reduce the pain and further damage. Wearing a dynamic splint, which pulls the thumb into opposition, will help prevent an excess in deformity. This splint can also assist in function and help the fingers flex towards the thumb. Stretching and the use of C-splints can also assist in prevention of further damage and deformity. These two methods can help in the degree of movement the thumb can have. While it is impossible to prevent trauma to your arms and wrist, patients can reduce the amount of compression by maintaining proper form during repetitive activities. Furthermore, strengthening and increasing flexibility reduces the risk of nerve compression.
Depending on the severity of the lesion, physicians may recommend either conservative treatment or surgery. The first step is simply to rest and modify daily activities that aggravate the symptoms. Patients may be prescribed anti-inflammatory drugs, Physical or Occupational therapy, splints for the elbow and wrists, and corticosteroid injections as well. This is the most common treatment for CTS. Especially involving compression at the wrist, such as in CTS, it is possible to recover without treatment. Physical therapy can help build muscle strength and braces or splints help recover. In pronator teres syndrome, specifically, immobilization of the elbow and mobility exercise within a pain-free range are initially prescribed. However, if the patient is not relieved of symptoms after a usual 2 to 3 month refractory period, then decompression surgery may be required. Surgery involves excising the tissue or removing parts of the bone compressing the nerve.
Many tendon transfers have been shown to restore opposition to the thumb and provide thumb and finger flexion. In order to have optimal results the individual needs to follow the following principles of tendon transfer: normal tissue equilibrium, movable joints, and a scar-free bed. If these requirements are met then certain factors need to be considered such as matching up the lost muscle mass, fiber length, and cross-sectional area and then pick out muscle-tendon units of similar size, strength, and potential excursion.
For patients with low median nerve palsy, it has been shown that the flexor digitorum superficialis of the long and ring fingers or the wrist extensors best approximate the force and motion that is required to restore full thumb opposition and strength. This type of transfer is the preferred method for median nerve palsy when both strength and motion are required. In situations when only thumb mobility is desired, the extensor indicis proprius is an ideal transfer.
For high median nerve palsy, the brachioradialis or the extensor carpi radialis longus transfer is more appropriate to restore lost thumb flexion and side-to-side transfer of the flexor digitorum profundus of the index finger are generally sufficient. To restore independent flexion of the index finger could be performed by using the pronator teres or extensor carpi radialis ulnaris tendon muscle units. All of the mentioned transfers are generally quite successful because they combine a proper direction of action, pulley location, and tendon insertion.
While pain symptoms may be effectively controlled using medications such as NSAID, amitriptyline, or vitamin B6 supplementation, effective treatment generally requires resolving the underlying cause.
Mild to moderate symptoms, such as pain or paresthesia, are treated conservatively with non-surgical approaches. Physiotherapy treatments can prove effective at treating cubital tunnel syndrome symptoms and can include:
- Joint mobilizations
- Neural flossing/gliding
- Strengthening/stretching exercises
- Activity modification
It is important to identify positions and activities that aggravate symptoms and to find ways to avoid them. For example, if the person experiences symptoms when holding a telephone up to the head, then the use of a telephone headset will provide immediate symptomatic relief and reduce the likelihood of further damage and inflammation to the nerve. For cubital tunnel syndrome, it is recommended to avoid repetitive elbow flexion and also avoiding prolonged elbow flexion during sleep, as this position puts stress of the ulnar nerve.
Surgery is recommended for those who are not improved with conservative therapy or those with serious or progressive symptoms. The surgical approaches vary, and may depend on the location or cause of impingement. Cubital and ulnar tunnel release can be performed wide awake with no general anaesthesia, no regional anaesthesia, no sedation and no tourniquet, and are usually done by Plastic Surgeons
Monteggia fractures may be managed conservatively in children with closed reduction (resetting and casting), but due to high risk of displacement causing malunion, open reduction internal fixation is typically performed.
Osteosynthesis (open reduction and internal fixation) of the ulnar shaft is considered the standard of care in adults. It promotes stability of the radial head dislocation and allows very early mobilisation to prevent stiffness. The elbow joint is particularly susceptible to loss of motion.
An immediate need in treatment is to ensure that the airway is open and not threatened (for example by tissues or foreign objects), because airway compromisation can occur rapidly and insidiously, and is potentially deadly. Material in the mouth that threatens the airway can be removed manually or using a suction tool for that purpose, and supplemental oxygen can be provided. Facial fractures that threaten to interfere with the airway can be reduced by moving the bones back into place; this both reduces bleeding and moves the bone out of the way of the airway. Tracheal intubation (inserting a tube into the airway to assist breathing) may be difficult or impossible due to swelling. Nasal intubation, inserting an endotracheal tube through the nose, may be contraindicated in the presence of facial trauma because if there is an undiscovered fracture at the base of the skull, the tube could be forced through it and into the brain. If facial injuries prevent oraotracheal or nasotracheal intubation, a surgical airway can be placed to provide an adequate airway. Although cricothyrotomy and tracheostomy can secure an airway when other methods fail, they are used only as a last resort because of potential complications and the difficulty of the procedures.
A dressing can be placed over wounds to keep them clean and to facilitate healing, and antibiotics may be used in cases where infection is likely. People with contaminated wounds who have not been immunized against tetanus within five years may be given a tetanus vaccination. Lacerations may require stitches to stop bleeding and facilitate wound healing with as little scarring as possible. Although it is not common for bleeding from the maxillofacial region to be profuse enough to be life-threatening, it is still necessary to control such bleeding. Severe bleeding occurs as the result of facial trauma in 1–11% of patients, and the origin of this bleeding can be difficult to locate. Nasal packing can be used to control nose bleeds and hematomas that may form on the septum between the nostrils. Such hematomas need to be drained. Mild nasal fractures need nothing more than ice and pain killers, while breaks with severe deformities or associated lacerations may need further treatment, such as moving the bones back into alignment and antibiotic treatment.
Treatment aims to repair the face's natural bony architecture and to leave as little apparent trace of the injury as possible. Fractures may be repaired with metal plates and screws. They may also be wired into place. Bone grafting is another option to repair the bone's architecture, to fill out missing sections, and to provide structural support. Medical literature suggests that early repair of facial injuries, within hours or days, results in better outcomes for function and appearance.
Surgical specialists who commonly treat specific aspects of facial trauma are oral and maxillofacial surgeons. These surgeons are trained in the comprehensive management of trauma to the lower, middle and upper face and have to take written and oral board examinations covering the management of facial injuries.
This treatment consists of aligning a bone or bones by a gentle, steady pulling action. The pulling may be transmitted to the bone or bones by a metal pin through a bone or by skin tapes. This is a preliminary treatment used in preparation for other secondary treatments.
Management depends on the severity of the fracture. An undisplaced fracture may be treated with a cast alone. The cast is applied with the distal fragment in palmar flexion and ulnar deviation. A fracture with mild angulation and displacement may require closed reduction. There is some evidence that immobilization with the wrist in dorsiflexion as opposed to palmarflexion results in less redisplacement and better functional status. Significant angulation and deformity may require an open reduction and internal fixation or external fixation. The volar forearm splint is best for temporary immobilization of forearm, wrist and hand fractures, including Colles fracture.
There are several established instability criteria:
dorsal tilt >20°,
comminuted fracture,
abruption of the ulnar styloid process,
intraarticular displacement >1mm,
loss of radial height >2mm.
A higher amount of instability criteria increases the likelihood of operative treatment.
Treatment modalities differ in the elderly.
Repeat Xrays are recommended at one, two, and six weeks to verify proper healing.