Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The underlying disorder must be treated. For example, if a spinal disc herniation in the low back is impinging on the nerve that goes to the leg and causing symptoms of foot drop, then the herniated disc should be treated. If the foot drop is the result of a peripheral nerve injury, a window for recovery of 18 months to 2 years is often advised. If it is apparent that no recovery of nerve function takes place, surgical intervention to repair or graft the nerve can be considered, although results from this type of intervention are mixed.
Non-surgical treatments for spinal stenosis include a suitable exercise program developed by a physical therapist, activity modification (avoiding activities that cause advanced symptoms of spinal stenosis), epidural injections, and anti-inflammatory medications like ibuprofen or aspirin. If necessary, a decompression surgery that is minimally destructive of normal structures may be used to treat spinal stenosis.
Non-surgical treatments for this condition are very similar to the non-surgical methods described above for spinal stenosis. Spinal fusion surgery may be required to treat this condition, with many patients improving their function and experiencing less pain.
Nearly half of all vertebral fractures occur without any significant back pain. If pain medication, progressive activity, or a brace or support does not help with the fracture, two minimally invasive procedures - vertebroplasty or kyphoplasty - may be options.
Ankles can be stabilized by lightweight orthoses, available in molded plastics as well as softer materials that use elastic properties to prevent foot drop. Additionally, shoes can be fitted with traditional spring-loaded braces to prevent foot drop while walking. Regular exercise is usually prescribed.
Functional electrical stimulation (FES) is a technique that uses electrical currents to activate nerves innervating extremities affected by paralysis resulting from spinal cord injury (SCI), head injury, stroke and other neurological disorders. FES is primarily used to restore function in people with disabilities. It is sometimes referred to as Neuromuscular electrical stimulation (NMES)
The latest treatments include stimulation of the peroneal nerve, which lifts the foot when you step. Many stroke and multiple sclerosis patients with foot drop have had success with it. Often, individuals with foot drop prefer to use a compensatory technique like steppage gait or hip hiking as opposed to a brace or splint.
Treatment for some can be as easy as an underside "L" shaped foot-up ankle support (ankle-foot orthoses). Another method uses a cuff placed around the patient's ankle, and a topside spring and hook installed under the shoelaces. The hook connects to the ankle cuff and lifts the shoe up when the patient walks.
Surgical treatment is only initiated if there is severe pain, as the available operations can be difficult. Otherwise, high arches may be handled with care and proper treatment.
Suggested conservative management of patients with painful pes cavus typically involves strategies to reduce and redistribute plantar pressure loading with the use of foot orthoses and specialised cushioned footwear. Other non-surgical rehabilitation approaches include stretching and strengthening of tight and weak muscles, debridement of plantar callosities, osseous mobilization, massage, chiropractic manipulation of the foot and ankle, and strategies to improve balance. There are also numerous surgical approaches described in the literature that are aimed at correcting the deformity and rebalancing the foot. Surgical procedures fall into three main groups:
1. soft-tissue procedures (e.g. plantar fascia release, Achilles tendon lengthening, tendon transfer);
2. osteotomy (e.g. metatarsal, midfoot or calcaneal);
3. bone-stabilising procedures (e.g. triple arthrodesis).
For idiopathic toe walking in young children, doctors may prefer to watch and wait: the child may "outgrow" the condition. If there is a reduction in the child's range of motion, there are several options.
- Wearing a brace or splint either during the day, night or both which limits the ability of the child to walk on their toes and stretches the Achilles tendon. One type of brace used is an AFO (ankle-foot orthosis).
- Serial casting where the foot is cast with the tendon stretched, and the cast is changed weekly with progressive stretching. However, these casts may not be changed weekly and instead every 2-3 weeks.
- Botox therapy is used to paralyze the calf muscles to reduce the opposition of the muscles to stretching the Achilles tendon, usually together with serial casting or splinting.
- If conservative measures fail to correct the toe walking after about 12–24 months, surgical lengthening of the tendon is an option. The surgery is typically done under full anesthesia but if there are no issues, the child is released the same day. After the surgery, a below-the-knee walking cast is worn for six weeks and then an AFO is worn to protect the tendon for several months.
For toe walking which results from more serious neuro-muscular conditions, additional specialists may need to be consulted.
Non-surgical therapies include:
- Shoe modifications: wearing shoes that have a wide toe box, and avoiding those with pointed toes or high heels.
- Oral nonsteroidal anti-inflammatory drugs may help in relieving the pain and inflammation.
- Injections of corticosteroid are commonly used to treat the inflammation.
- Bunionette pads placed over the affected area may help reduce pain.
- An ice pack may be applied to reduce pain and inflammation.
Surgery is often considered when pain continues for a long period with no improvement in these non-surgical therapies.
Most of these conditions are self-correcting during childhood. In the worst cases, surgery may be needed. Most of the time, this involves lengthening the Achilles tendon. Less severe treatment options for pigeon toe include keeping a child from crossing his or her legs, use of corrective shoes, and casting of the foot and lower legs, which is normally done before the child reaches 12 months of age or older.
If the pigeon toe is mild and close to the center, treatment may not be necessary.
Ballet has been used as a treatment for mild cases. Dance exercises can help to bend the legs outward.
In some cases, foot diseases and painful conditions can be treated. Synovium hydrates the cartilage in the heal and can bring pain relief quickly. Synovium gel looks as well as strongly smells like urine, straying some consumers away. However this only occurs after expiration. Blood thinners can also work however are deemed as bad relievers by medical practitioners due to the fact that they can contribute to headaches and in some cases increase foot pain afterwards.
A doctor will typically evaluate whether there is bilateral (both legs) toe walking, what the child's range of motion is (how far they can flex their feet) and perform a basic neurological exam. Treatment will depend on the cause of the condition.
The injury can be debilitating for athletes of many sports who need to accelerate, quickly change direction, or jump. Use of the toes is not possible during the healing process. Since the toes are necessary for proper push-off when accelerating, those sorts of athletic activities should be almost completely curtailed. An extended healing period of one or more months is often required.
Because of the anatomy of the distal foot and the unique use of the foot, it is often impossible to properly tape or brace the joint. Although difficult, it is not impossible to tape the toe to limit extension (upward bend of toe). Additionally, wearing a shoe with a rigid sole (often a metal plate) and cushioned innersole will help minimize extension of the joint. Anti-inflammatory medication as well as physical therapy is recommended.
Turf toe is usually healed in about 2–3 weeks. It can become more serious if left untreated, and may cause serious problems for the athlete. Treating the injury includes icing of the area, elevating the foot, or possibly the use of custom orthotics.
Once the process is recognized, it should be treated via the VIPs — vascular management, infection management and prevention, and pressure relief. Aggressively pursuing these three strategies will progress the healing trajectory of the wound. Pressure relief (off-loading) and immobilization with total contact casting (TCC) are critical to helping ward off further joint destruction.
TCC involves encasing the patient’s complete foot, including toes, and the lower leg in a specialist cast that redistributes weight and pressure in the lower leg and foot during everyday movements. This redistributes pressure from the foot into the leg, which is more able to bear weight, to protect the wound, letting it regenerate tissue and heal. TCC also keeps the ankle from rotating during walking, which prevents shearing and twisting forces that can further damage the wound. TCC aids maintenance of quality of life by helping patients to remain mobile.
There are two scenarios in which the use of TCC is appropriate for managing neuropathic arthropathy (Charcot foot), according to the American Orthopaedic Foot and Ankle Society. First, during the initial treatment, when the breakdown is occurring, and the foot is exhibiting edema and erythema; the patient should not bear weight on the foot, and TCC can be used to control and support the foot. Second, when the foot has become deformed and ulceration has occurred; TCC can be used to stabilize and support the foot, and to help move the wound toward healing.
Walking braces controlled by pneumatics are also used. Surgical correction of a joint is rarely successful in the long-term in these patients. However, off-loading alone does not translate to optimal outcomes without appropriate management of vascular disease and/or infection. Duration and aggressiveness of offloading (non-weight-bearing vs. weight-bearing, non-removable vs. removable device) should be guided by clinical assessment of healing of neuropathic arthropathy based on edema, erythema, and skin temperature changes. It can take 6–9 months for the edema and erythema of the affected joint to recede.
Treatment is usually with some combination of the Ponseti or French methods. The Ponseti method includes the following: casting together with manipulation, cutting the Achilles tendon, and bracing. The Ponseti method has been found to be effective in correcting the problem in those under the age of two. The French method involves realignment and tapping of the foot is often effective but requires a lot of effort by caregivers. Another technique known as Kite does not appear as good. In about 20% of cases further surgery is required.
Asymptomatic anatomical variations in feet generally do not need treatment.
Conservative treatment for foot pain with Morton's toe may involve exercises or placing a flexible pad under the first toe and metatarsal; an early version of the latter treatment was once patented by Dudley Joy Morton. Restoring the Morton’s toe to normal function with proprioceptive orthotics can help alleviate numerous problems of the feet such as metatarsalgia, hammer toes, bunions, Morton's neuroma, plantar fasciitis, and general fatigue of the feet. Rare cases of disabling pain are sometimes treated surgically.
About 90% of plantar fasciitis cases will improve within six months with conservative treatment, and within a year regardless of treatment. Many treatments have been proposed for plantar fasciitis. Most have not been adequately investigated and there is little evidence to support recommendations for such treatments. First-line conservative approaches include rest, heat, ice, and calf-strengthening exercises; techniques to stretch the calf muscles, Achilles tendon, and plantar fascia; weight reduction in the overweight or obese; and nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin or ibuprofen. NSAIDs are commonly used to treat plantar fasciitis, but fail to resolve the pain in 20% of people.
Extracorporeal shockwave therapy (ESWT) is an effective treatment modality for plantar fasciitis pain unresponsive to conservative nonsurgical measures for at least three months. Evidence from meta-analyses suggests significant pain relief lasts up to one year after the procedure. However, debate about the therapy's efficacy has persisted. ESWT can be performed with or without anesthesia though studies have suggested that the therapy is less effective when anesthesia is given. Complications from ESWT are rare and typically mild when present. Known complications of ESWT include the development of a mild hematoma or an ecchymosis, redness around the site of the procedure, or migraine.
Corticosteroid injections are sometimes used for cases of plantar fasciitis refractory to more conservative measures. The injections may be an effective modality for short-term pain relief up to one month, but studies failed to show effective pain relief after three months. Notable risks of corticosteroid injections for plantar fasciitis include plantar fascia rupture, skin infection, nerve or muscle injury, or atrophy of the plantar fat pad. Custom orthotic devices have been demonstrated as an effective method to reduce plantar fasciitis pain for up to 12 weeks. The long-term effectiveness of custom orthotics for plantar fasciitis pain reduction requires additional study. Orthotic devices and certain taping techniques are proposed to reduce pronation of the foot and therefore reduce load on the plantar fascia resulting in pain improvement.
Another treatment technique known as plantar iontophoresis involves applying anti-inflammatory substances such as dexamethasone or acetic acid topically to the foot and transmitting these substances through the skin with an electric current. Moderate evidence exists to support the use of night splints for 1–3 months to relieve plantar fasciitis pain that has persisted for six months. The night splints are designed to position and maintain the ankle in a neutral position thereby passively stretching the calf and plantar fascia overnight during sleep.
Other treatment approaches may include supportive footwear, arch taping, and physical therapy.
Aside from surgery, there are a few options for handling an accessory navicular bone that has become symptomatic. This includes immobilization, icing, medicating, physical therapy, and orthotic devices. Immobilizing involves placing the foot and ankle in a cast or removable walking boot. This alleviates stressors on the foot and can decrease inflammation. Icing will help reduce swelling and inflammation. Medication involves usage of nonsteroidal anti-inflammatory drugs, or steroids (taken orally or injected) to decrease inflammation. Physical therapy can be prescribed in order to strengthen the muscles and help decrease inflammation. Physical therapy can also help prevent the symptoms from returning. Orthotic devices (arch support devices that fit in a shoe) can help prevent future symptoms. Occasionally, the orthotic device will dig into the edge of the accessory navicular and cause discomfort. For this reason, the orthotic devices made for the patient should be carefully constructed.
Botulinum Toxin A injections as well as similar techniques such as platelet-rich plasma injections and prolotherapy remain controversial.
Dry needling is also being researched for treatment of plantar fasciitis. A systematic review of available research found limited evidence of effectiveness for this technique. The studies were reported to be inadequate in quality and too diverse in methodology to enable reaching a firm conclusion.
Most flexible flat feet are asymptomatic, and do not cause pain. In these cases, there is usually no cause for concern. Flat feet were formerly a physical-health reason for service-rejection in many militaries. However, three military studies on asymptomatic adults (see section below), suggest that persons with asymptomatic flat feet are at least as tolerant of foot stress as the population with various grades of arch. Asymptomatic flat feet are no longer a service disqualification in the U.S. military.
In a study performed to analyze the activation of the tibialis posterior muscle in adults with pes planus, it was noted that the tendon of this muscle may be dysfunctional and lead to disabling weightbearing symptoms associated with acquired flat foot deformity. The results of the study indicated that while barefoot, subjects activated additional lower-leg muscles to complete an exercise that resisted foot adduction. However, when the same subjects performed the exercise while wearing arch supporting orthotics and shoes, the tibialis posterior was selectively activated. Such discoveries suggest that the use of shoes with properly fitting, arch-supporting orthics will enhance selective activation of the tibialis posterior muscle thus, acting as an adequate treatment for the undesirable symptoms of pes planus.
Rigid flatfoot, a condition where the sole of the foot is rigidly flat even when a person is not standing, often indicates a significant problem in the bones of the affected feet, and can cause pain in about a quarter of those affected. Other flatfoot-related conditions, such as various forms of tarsal coalition (two or more bones in the midfoot or hindfoot abnormally joined) or an accessory navicular (extra bone on the inner side of the foot) should be treated promptly, usually by the very early teen years, before a child's bone structure firms up permanently as a young adult. Both tarsal coalition and an accessory navicular can be confirmed by X-ray. Rheumatoid arthritis can destroy tendons in the foot (or both feet) which can cause this condition, and untreated can result in deformity and early onset of osteoarthritis of the joint. Such a condition can cause severe pain and considerably reduced ability to walk, even with orthoses. Ankle fusion is usually recommended.
Treatment of flat feet may also be appropriate if there is associated foot or lower leg pain, or if the condition affects the knees or the lower back. Treatment may include using orthoses such as an arch support, foot gymnastics or other exercises as recommended by a podiatrist/orthotist or physical therapist. In cases of severe flat feet, orthoses should be used through a gradual process to lessen discomfort. Over several weeks, slightly more material is added to the orthosis to raise the arch. These small changes allow the foot structure to adjust gradually, as well as giving the patient time to acclimatise to the sensation of wearing orthoses. Once prescribed, orthoses are generally worn for the rest of the patient's life. In some cases, surgery can provide lasting relief, and even create an arch where none existed before; it should be considered a last resort, as it is usually very time consuming and costly.
Type II should be managed conservatively whereas type I and Ia requires to be treated surgically. Surgery involves four major steps:
- Development of the calcaneal part of the foot
- Repositioning of the navicular bone
- New adjustment of the ankle, and
- Various stabilization measures including the Grice operation and transposition of various tendons.
With prompt treatment, particularly open reduction, and early mobilisation the outcome is generally good. High energy injuries and associated fractures worsen the outcome.
The French method for treatment of clubfoot is a conservative method of treatment of a newborn which requires daily physical therapy for the first two months. The goal of this treatment is to avoid future need of surgery, but the success rate varies and after release surgery may still be necessary. The treatment includes daily manipulations of the feet along with stretching of the feet, followed by taping in order to maintain the range of motion gains achieved at the end of each session. The French method differs from the Ponseti method in that the taping techniques allow some motion in the feet. Another focus is to strengthen the peroneal muscles which is thought to contribute towards long-term correction. After the two month mark physical therapy sessions can be weaned down to three times per week instead of daily until the child reaches six months old. Parents are required to continue on with home exercises and night splinting even after the program has achieved proper foot correction in order to maintain the correction. The Ponseti method is generally preferred.
Plyometrics exercises such as squat jumps and power skipping should not be implemented until the ankle has regained full agility.
Other strategies that can be used to prevent ankle injury include:
- Ensure proper warm-up prior to stretching and activity;
- When running, choose level surfaces and avoid rocks or holes;
- Ensure that shoes have adequate heel support; and...
- If high-heeled shoes are worn, ensure that heels are no more than 2 inches in height, and avoid heels with a narrow base.
Ice is often used to reduce swelling in cycles of 15–20 minutes on and 20–30 minutes off. Icing an ankle too long can cause cold injuries, indicated if the area turns white.
In uncomplicated lateral ankle sprains, swelling of the soft tissue can be prevented with compression around both malleoli, elevation of the injured ankle higher than the heart, and pain-free exercises.
An orthopedic walking boot is often used for the treatment of a sprained ankle injury. Braces and crutches are also used to help alleviate the pain so the injured ankle can heal as quickly and painlessly as possible.
Although found to be less effective than casts, compression bandages are used to provide support and compression for sprained ankles. Wrapping is started at the ball of the foot and slowly continued up to the base of the calf muscle, which pushes the swelling up toward the center of the body so that it does not gather in the foot.
Treatment usually involves resting the affected foot, taking pain relievers and trying to avoid putting pressure on the foot. In acute cases, the patient is often fitted with a cast that stops below the knee. The cast is usually worn for 6 to 8 weeks. After the cast is taken off, some patients are prescribed arch support for about 6 months. Also, moderate exercise is often beneficial, and physical therapy may help as well.
Prognosis for children with this disease is very good. It may persist for some time, but most cases are resolved within two years of the initial diagnosis. Although in most cases no permanent damage is done, some will have lasting damage to the foot. Also, later in life, Kohler's disease can spread to the hips.
Outcomes vary depending on the location of the disease, the degree of damage to the joint, and whether surgical repair was necessary. Average healing times vary from 55–97 days depending on location. Up to 1–2 years may be required for complete healing.
Appropriate treatment for lameness depends on the condition diagnosed, but at a minimum it usually includes rest or decreased activity and anti-inflammatory medications. Other treatment options, such as corrective shoeing, joint injections, and regenerative therapies, are pursued based on the cause of lameness and the financial limits of the owner. Consultation with a veterinarian is generally recommended, even for mild cases, as some types of lameness may worsen if not properly diagnosed and treated.
Options include operative or non-operative treatment. If the dislocation is less than 2 mm, the fracture can be managed with casting for six weeks. The patient's injured limb cannot bear weight during this period. For severe Lisfranc injuries, open reduction with internal fixation (ORIF) and temporary screw or Kirschner wire (K-wire) fixation is the treatment of choice. The foot cannot be allowed to bear weight for a minimum of six weeks. Partial weight-bearing may then begin, with full weight bearing after an additional several weeks, depending on the specific injury. K-wires are typically removed after six weeks, before weight bearing, while screws are often removed after 12 weeks.
When a Lisfranc injury is characterized by significant displacement of the tarsometatarsal joint(s), nonoperative treatment often leads to severe loss of function and long-term disability secondary to chronic pain and sometimes to a planovalgus deformity. In cases with severe pain, loss of function, or progressive deformity that has failed to respond to nonoperative treatment, mid-tarsal and tarsometatarsal arthrodesis (operative fusion of the bones) may be indicated.
The mainstay of treatment, like the treatment of gangrene, is surgical debridement, and often includes amputation.