Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
If infested, animals should be removed from the flock and all wool in and around roughly a 1 cm or larger radius of the discoloured area clipped. The area is treated with insecticide to kill the maggots. Soothing cream can also be applied to skin grazes or lesions caused by the maggots. Clippings should be collected after removal and placed in a maggot-proof bag and left closed in the sun, to ensure that no other animal is infected.
There are several preventative measures which are used to reduce the occurrence of flystrike in sheep flocks, these include:
- Controlling intestinal parasites to prevent scours and a suitable surface for flystrike
- Scheduled shearing and crutching
- Removing the tails of lambs at weaning
- Mulesing
- Preventative chemical treatments before fly infestation risk is high
- Breeding for traits that reduce the likelihood of infestation
- Removing or avoiding large maunure heaps or other sites attractive to the flies
- Using fly traps near the flock to attract and kill any local flies, helping to minimise the local populations. NB: Traps often emit a pungent smell and are best placed away from human activity.
None of these measures completely stop the occurrence of fly strike in sheep, and regular treatment is still necessary.
Amphistomiasis is considered a neglected tropical disease, with no prescription drug for treatment and control. Therefore, management of infestation is based mainly on control of the snail population, which transmit the infective larvae of the flukes. However, there are now drugs shown to be effective including resorantel, oxyclozanide, clorsulon, ivermectin, niclosamide, bithional and levamisole. An in vitro demonstration shows that plumbagin exhibits high efficacy on adult flukes. Since the juvenile flukes are the causative individuals of the disease, effective treatment means control of the immature fluke population. Prophylaxis is therefore based on disruption of the environment (such as proper drainage) where the carrier snails inhabit, or more drastic action of using molluscicides to eradicate the entire population. For treatment of the infection, drugs effective against the immature flukes are recommended for drenching. For this reason oxyclozanide is advocated as the drug of choice. It effectively kills the flukes within a few hours and it effective against the flukes resistant to other drugs. The commercially prescribed dosage is 5 mg/kg body weight or 18.7 mg/kg body weight in two divided dose within 72 hours. Niclosamide is also extensively used in mass drenching of sheep. Successfully treated sheep regain appetite within a week, diarrhoea stops in about three days, and physiological indicators (such as plasma protein and albumin levels) return to normal in a month.
This applies once an infestation is established. In many circles the first response to cutaneous myiasis once the breathing hole has formed, is to cover the air hole thickly with petroleum jelly. Lack of oxygen then forces the larva to the surface, where it can more easily be dealt with. In a clinical or veterinary setting there may not be time for such tentative approaches, and the treatment of choice might be more direct, with or without an incision. First the larva must be eliminated through pressure around the lesion and the use of forceps. Secondly the wound must be cleaned and disinfected. Further control is necessary to avoid further reinfestation.
Livestock may be treated prophylactically with slow release boluses containing ivermectin which can provide long-term protection against the development of the larvae.
Sheep also may be dipped, a process which involves drenching the animals in persistent insecticide to poison the larvae before they develop into a problem.
Several drugs are effective for fascioliasis, both in humans and in domestic animals. The drug of choice in the treatment of fasciolosis is triclabendazole, a member of the benzimidazole family of anthelmintics. The drug works by preventing the polymerization of the molecule tubulin into the cytoskeletal structures, microtubules. Resistance of "F. hepatica" to triclabendazole has been recorded in Australia in 1995 and Ireland in 1998.
Praziquantel treatment is ineffective.
There are case reports of nitazoxanide being successfully used in human fasciolosis treatment in Mexico. There are also reports of bithionol being used successfully.
More recently, Mirazid, an Egyptian drug made from myrrh, has been investigated as an oral treatment of trematode-caused ailments including fascioliasis.
Nitazoxanide has been found effective in trials, but is currently not recommended. The life cycle includes freshwater snails as an intermediate host of the parasite.
Because they live so close to the outside of the body, "Thelazia" is one of the few nematode infections which can be treated topically.
Topical treatment of livestock, dogs and cats with organophosphates (such as ecothiopate iodide or isofluorophate) and systemic treatment with anthelmintics (such as ivermectin, levamisole, and doramectin) are recommended by the Merck Veterinary Manual. Other sources have reported positive results treating dogs with moxidectin, imidacloprid, or milbemycin oxime.
For the treatment of human cases, removal of the worm is suggested. Topical treatment with cocaine or thiabendazole have also been reported to kill the worms in human cases.
Because most, if not all, species of "Thelazia" are spread by flies, sanitary practices which reduce the presence of flies will also reduce the spread of thelaziasis.
The first control method is preventive and aims to eradicate the adult flies before they can cause any damage and is called vector control. The second control method is the treatment once the infestation is present, and concerns the infected animals (including humans).
The principal control method of adult populations of myiasis inducing flies involves insecticide applications in the environment where the target livestock is kept. Organophosphorus or organochlorine compounds may be used, usually in a spraying formulation. One alternative prevention method is the sterile insect technique (SIT) where a significant number of artificially reared sterilized (usually through irradiation) male flies are introduced. The male flies compete with wild breed males for females in order to copulate and thus cause females to lay batches of unfertilized eggs which cannot develop into the larval stage.
One prevention method involves removing the environment most favourable to the flies, such as by removal of the tail. Another example is the crutching of sheep, which involves the removal of wool from around the tail and between the rear legs, which is a favourable environment for the larvae. Another, more permanent, practice which is used in some countries is mulesing, where skin is removed from young animals to tighten remaining skin – leaving it less prone to fly attack.
To prevent myiasis in humans, there is a need for general improvement of sanitation, personal hygiene, and extermination of the flies by insecticides. Clothes should be washed thoroughly, preferably in hot water, dried away from flies, and ironed thoroughly. The heat of the iron kills the eggs of myiasis-causing flies.
Lungworm infestations can cause significant distress to the animal but are usually treatable with drugs.
If infected with lungworm parasite, an anti-parasite drug must be administered.
In the case of a severe reaction, an anti-inflammatory drug of corticosteroids may be given for a brief period (3 to 10 days).
To treat tissue inflammation, Prednisone is usually given (5–10 days). However, there are some side effects such as increased urination or appetite.
The drugs fenbendazole or moxidectin are usually administered to kill the parasite.
There are several different lungworm parasites that have been identified. Although they all originate from the lungworm parasite, they are treated somewhat differently and requires a combination of various drugs to treat the parasite.
Tapeworms are treated with medications taken by mouth, usually in a single dose. The drug of choice for tapeworm infections is praziquantel. Niclosamide can also be used.
Repeat chest X-rays in 2 and 4 weeks after treatment. Also, recheck a fecal sample to monitor for the presence of larvae or ova in 2 to 4 weeks. This will confirm if the parasite is still living inside the respiratory tissue.
In order to control for the disease, the "Lymnaea" spp snails, which are the intermediate host for the liver flukes, need to be controlled. There are three ways that have proven most effective when controlling the snail populations:
- The first is by treating pastures and water channels with copper sulfate. This method is not always practical, because it is too expensive to treat in large areas. Lack of cooperation between neighbors is also a problem, snails are easily transported, and treated pastures become re-infested by neighboring fields and streams.
- Drenching the sheep with carbon tetra-chloride in paraffin oil has proven to be an alternative. However, drenching in more than recommended doses can be fatal, by causing liver damage, which could initiate the disease in sheep carrying "B. oedematiens" spores.
- Drainage is an effective option to eliminate the snails. However, draining the places where the grass grows eliminates a source of food for the sheep and creates other unwanted problems.
Treatment of loiasis involves chemotherapy or, in some cases, surgical removal of adult worms followed by systemic treatment. The current drug of choice for therapy is diethylcarbamazine (DEC), though ivermectin use is not unwarranted. The recommend dosage of DEC is 6 mg/kg/d taken three times daily for 12 days. The pediatric dose is the same. DEC is effective against microfilariae and somewhat effective against macrofilariae (adult worms).
In patients with high microfilaria load, however, treatment with DEC may be contraindicated, as the rapid microfilaricidal actions of the drug can provoke encephalopathy. In these cases, albendazole administration has proved helpful, and superior to ivermectin, which can also be risky despite its slower-acting microfilaricidal effects.
Management of "Loa loa" infection in some instances can involve surgery, though the timeframe during which surgical removal of the worm must be carried out is very short. A detailed surgical strategy to remove an adult worm is as follows (from a real case in New York City). The 2007 procedure to remove an adult worm from a male Gabonian immigrant employed proparacaine and povidone-iodine drops, a wire eyelid speculum, and 0.5 ml 2% lidocaine with epinephrine 1:100,000, injected superiorly. A 2-mm incision was made and the immobile worm was removed with forceps. Gatifloxacin drops and an eye-patch over ointment were utilized post surgery and there were no complications (unfortunately, the patient did not return for DEC therapy to manage the additional worm—and microfilariae—present in his body).
Treatment usually involves a prescription of doxycycline (a normal dose would be 100 mg every 12 hours for adults) or a similar class of antibiotics. Oxytetracycline and imidocarb have also been shown to be effective. Supportive therapy such as blood products and fluids may be necessary.
The recommended treatment for people outside the United States is albendazole combined with ivermectin. A combination of diethylcarbamazine and albendazole is also effective. Side effects of the drugs include nausea, vomiting, and headaches. All of these treatments are microfilaricides; they have no effect on the adult worms. While the drugs are critical for treatment of the individual, proper hygiene is also required.
Different trials were made to use the known drug at its maximum capacity in absence of new drugs. In a study from India, it was shown that a formulation of albendazole had better anti-filarial efficacy than albendazole itself.
In 2003, the common antibiotic doxycycline was suggested for treating elephantiasis. Filarial parasites have symbiotic bacteria in the genus "Wolbachia", which live inside the worm and seem to play a major role in both its reproduction and the development of the disease. This drug has shown signs of inhibiting the reproduction of the bacteria, further inducing sterility.
Clinical trials in June 2005 by the Liverpool School of Tropical Medicine reported an eight-week course almost completely eliminated microfilaraemia.
Because "O. sericea" is both frequently encountered and relatively palatable to livestock, it is an important cause of economic losses in livestock production. Keeping livestock away from locoweed infested pasture in spring and fall when grass and other forbs are not actively growing is recommended. Another suggested remedy is to provide palatable supplemental nutrients if animals are to be kept in infested pasture. These remedies take into account livestock preference for locoweed during seasons when grass is dry and not very nutritious. Conditioned food aversion has been used experimentally to discourage livestock from eating it. In horses, a small study has shown promising results using lithium chloride as the aversive agent.
Vaccines against anaplasmosis are available. Carrier animals should be eliminated from flocks. Tick control may also be useful although it can be difficult to implement.
Stage I of the condition is usually treated with pentamidine or suramin through intramuscular injection or intravenous infusion if sufficient observation is possible. Stage II of the disease is typically treated with melarsoprol or eflornithine preferably introduced to the body intravenously. Both pentamidine and suramin have limited side effects. Melarsoprol is extremely effective but has many serious side effects which can cause neurological damage to a patient, however, the drug is often a patient's last hope in many late stage cases. Eflornithine is extremely expensive but has side effects that may be treated with ease. In regions of the world where the disease is common eflornithine is provided for free by the World Health Organization.
Bumblefoot is so named because of the characteristic "bumbles" or lesions, as well as swelling of the foot pad, symptomatic of an infection. Topical antiseptics in addition to oral or injected antibiotics may be used to combat the infection, which if left untreated may be fatal.
For the treatment of individuals, doxycycline is used to kill the "Wolbachia" bacteria that live in adult worms. This adjunct therapy has been shown to significantly lower microfilarial loads in the host, and may kill the adult worms, due to the symbiotic relationship between "Wolbachia" and the worm. In four separate trials over 10 years with various dosing regimens of doxycycline for individualized treatment, doxycycline was found to be effective in sterilizing the female worms and reducing their numbers over a period of four to six weeks. Research on other antibiotics, such as rifampicin, has shown it to be effective in animal models at reducing "Wolbachia" both as an alternative and as an adjunct to doxycycline. However, doxycycline treatment requires daily dosing for at least four to six weeks, making it more difficult to administer in the affected areas.
In mass drug administration (MDA) programmes, the treatment for onchocerciasis is ivermectin (trade name: Mectizan); infected people can be treated with two doses of ivermectin, six months apart, repeated every three years. The drug paralyses and kills the microfilariae causing fever, itching, and possibly oedema, arthritis and lymphadenopathy. Intense skin itching is eventually relieved, and the progression towards blindness is halted. In addition, while the drug does not kill the adult worms, it does prevent them for a limited time from producing additional offspring. The drug therefore prevents both morbidity and transmission for up to several months.
Ivermectin treatment is particularly effective because it only needs to be taken once or twice a year, needs no refrigeration, and has a wide margin of safety, with the result that it has been widely given by minimally trained community health workers.
Herbicide applications aimed to reduce ryegrass population have been successful in reducing the risk of ARGT but have undesirable effects such as rapid reduction in pasture productivity and increase in ryegrass herbicide resistance.
A recently released biological control agent, the twist fungus, has been demonstrated to be effective in reducing the risk ARGT without the need of controlling ryegrass. The first use of the twist fungus inoculum was in 1997.
Filarial diseases in humans offer prospects for elimination by means of vermicidal treatment. If the human link in the chain of infection can be broken, then notionally the disease could be wiped out in a season. In practice it is not quite so simple, and there are complications in that multiple species overlap in certain regions and double infections are common. This creates difficulties for routine mass treatment because people with onchocerciasis in particular react badly to treatment for lymphatic filariasis.
Diethylcarbamazine has been shown as an effective prophylaxis for "Loa loa" infection.
A study of Peace Corps volunteers in the highly Loa—endemic Gabon, for example, had the following results: 6 of 20 individuals in a placebo group contracted the disease, compared to 0 of 16 in the DEC-treated group. Seropositivity for antifilarial IgG antibody was also much higher in the placebo group. The recommended prophylactic dose is 300 mg DEC given orally once weekly. The only associated symptom in the Peace Corps study was nausea.
Researchers believe that geo-mapping of appropriate habitat and human settlement patterns may, with the use of predictor variables such as forest, land cover, rainfall, temperature, and soil type, allow for estimation of Loa loa transmission in the absence of point-of-care diagnostic tests. In addition to geo-mapping and chemoprophylaxis, the same preventative strategies used for malaria should be undertaken to avoid contraction of loiasis. Specifically, DEET-containing insect repellent, permethrin-soaked clothing, and thick, long-sleeved and long-legged clothing ought to be worn to decrease susceptibility to the bite of the mango or deer fly vector. Because the vector is day-biting, mosquito (bed) nets do not increase protection against loiasis.
Vector elimination strategies are an interesting consideration. It has been shown that the "Chrysops" vector has a limited flying range, but vector elimination efforts are not common, likely because the insects bite outdoors and have a diverse, if not long, range, living in the forest and biting in the open, as mentioned in the vector section.
No vaccine has been developed for loiasis and there is little report on this possibility.
For "T. b. gambiense" the combination of nifurtimox and eflornithine (NECT) or eflornithine alone appear to be more effective and result in fewer side effects. These treatments may replace melarsoprol when available with the combination being first line. NECT has the benefit of requiring less injections of eflornithine.
Intravenous melarsoprol was previously the standard treatment for second-stage (neurological phase) disease and is effective for both types. Melarsoprol is the only treatment for second stage "T. b. rhodesiense"; however, it causes death in 5% of people who take it. Resistance to melarsoprol can occur.
There has been anecdotal evidence provided by Elaine Ingham according to which susceptibility to facial eczema in cattle is related to nutrient deficiency of forage. The experiment, which Ingham conducted, showed that by improving soil biology the forage had better nutrient qualities and was associated with an elimination of the disease.