Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The disease is incurable once manifested, so there is no specific drug therapy for TBE. Symptomatic brain damage requires hospitalization and supportive care based on syndrome severity. Anti-inflammatory drugs, such as corticosteroids, may be considered under specific circumstances for symptomatic relief. Tracheal intubation and respiratory support may be necessary.
Prevention includes non-specific (tick-bite prevention, tick checks) and specific prophylaxis in the form of a vaccine. TBE immunoglobulin is no longer used. Tick-borne encephalitis vaccine is very effective and available in many disease endemic areas and in travel clinics.
Paracetamol (acetaminophen) and NSAIDs, such as ibuprofen, may be used to reduce fever and pain. Prednisone, a corticosteroid, while used to try to reduce throat pain or enlarged tonsils, remains controversial due to the lack of evidence that it is effective and the potential for side effects. Intravenous corticosteroids, usually hydrocortisone or dexamethasone, are not recommended for routine use but may be useful if there is a risk of airway obstruction, a very low platelet count, or hemolytic anemia.
There is little evidence to support the use of antivirals such as aciclovir and valacyclovir although they may reduce initial viral shedding. Although antivirals are not recommended for people with simple infectious mononucleosis, they may be useful (in conjunction with steroids) in the management of severe EBV manifestations, such as EBV meningitis, peripheral neuritis, hepatitis, or hematologic complications.
Although antibiotics exert no antiviral action they may be indicated to treat bacterial secondary infections of the throat, such as with streptococcus (strep throat). However, ampicillin and amoxicillin are not recommended during acute Epstein–Barr virus infection as a diffuse rash may develop.
Omsk Hemorrhagic Fever could be diagnosed by isolating virus from blood, or by serologic testing using immunosorbent serological assay. OHF rating of fatality is 0.5–3%. There is no specific treatment for OHF so far but one way to help get rid of OHF is by supportive therapy. Supportive therapy helps maintain hydration and helps to provide precautions for patients with bleeding disorders.
Infectious mononucleosis is generally self-limiting, so only symptomatic or supportive treatments are used. The need for rest and return to usual activities after the acute phase of the infection may reasonably be based on the person's general energy levels. Nevertheless, in an effort to decrease the risk of splenic rupture experts advise avoidance of contact sports and other heavy physical activity, especially when involving increased abdominal pressure or the Valsalva maneuver (as in rowing or weight training), for at least the first 3–4 weeks of illness or until enlargement of the spleen has resolved, as determined by a treating physician.
There is currently no specific treatment for Zika virus infection. Care is supportive with treatment of pain, fever, and itching. Some authorities have recommended against using aspirin and other NSAIDs as these have been associated with hemorrhagic syndrome when used for other flaviviruses. Additionally, aspirin use is generally avoided in children when possible due to the risk of Reye syndrome.
Zika virus had been relatively little studied until the major outbreak in 2015, and no specific antiviral treatments are available as yet. Advice to pregnant women is to avoid any risk of infection so far as possible, as once infected there is little that can be done beyond supportive treatment.
When infection attacks the body, "anti-infective" drugs can suppress the infection. Several broad types of anti-infective drugs exist, depending on the type of organism targeted; they include antibacterial (antibiotic; including antitubercular), antiviral, antifungal and antiparasitic (including antiprotozoal and antihelminthic) agents. Depending on the severity and the type of infection, the antibiotic may be given by mouth or by injection, or may be applied topically. Severe infections of the brain are usually treated with intravenous antibiotics. Sometimes, multiple antibiotics are used in case there is resistance to one antibiotic. Antibiotics only work for bacteria and do not affect viruses. Antibiotics work by slowing down the multiplication of bacteria or killing the bacteria. The most common classes of antibiotics used in medicine include penicillin, cephalosporins, aminoglycosides, macrolides, quinolones and tetracyclines.
Not all infections require treatment, and for many self-limiting infections the treatment may cause more side-effects than benefits. Antimicrobial stewardship is the concept that healthcare providers should treat an infection with an antimicrobial that specifically works well for the target pathogen for the shortest amount of time and to only treat when there is a known or highly suspected pathogen that will respond to the medication.
Preventing Omsk Hemorrhagic Fever consists primarily in avoiding being exposed to tick. Persons engaged in camping, farming, forestry, hunting (especially the Siberian muskrat) are at greater risk and should wear protective clothing or use insect repellent for protection. The same is generally recommended for persons at sheltered locations.
There is no specific treatment for infectious mononucleosis, other than treating the symptoms. In severe cases, steroids such as corticosteroids may be used to control the swelling of the throat and tonsils. Currently, there are no antiviral drugs or vaccines available.
It is important to note that symptoms related to infectious mononucleosis caused by EBV infection seldom last for more than 4 months. When such an illness lasts more than 6 months, it is frequently called chronic EBV infection. However, valid laboratory evidence for continued active EBV infection is seldom found in these patients. The illness should be investigated further to determine if it meets the criteria for chronic fatigue syndrome, or CFS. This process includes ruling out other causes of chronic illness or fatigue.
There is currently no established treatment.
Half of all cases results in permanent neurological damage and 10-15% result in death.
Brazilian hemorrhagic fever (BzHF) is an infectious disease caused by the Sabiá virus, an Arenavirus. The Sabiá virus is one of the arenoviruses from South America to cause hemorrhagic fever. It shares a common progenitor with the Junin virus, Machupo virus, Tacaribe virus, and Guanarito virus. It is an enveloped RNA virus and is highly infectious and lethal. Very little is known about this disease, but it is thought to be transmitted by the excreta of rodents.
There have only been three documented infections of the Sabiá virus, only one of which occurred naturally and the other two cases occurred in the clinical setting. The only naturally occurring case was in 1990, when a female agricultural engineer who was staying in the neighborhood of Jardim Sabiá near São Paulo, Brazil contracted the disease. She presented with hemorrhagic fever and died. Her autopsy showed liver necrosis. A virologist who was studying the woman's disease contracted the virus but survived. Ribavirin was not given in these first two cases. Four years later, in 1994, a researcher was exposed to the virus in a level 3 biohazard facility at Yale University when a centrifuge bottle cracked, leaked, and released aerosolized virus particle. He was successfully treated with ribavirin.
Ribavirin is thought to be effective in treating the illness, similar to other arenaviruses. Compared to the patients who did not receive ribavirin, the patient who was treated with it had a shorter and less severe clinical course. Symptomatic control such as fluids to address dehydration and bleeding may also be required.
The Sabiá virus is a Biosafety Level 4 pathogen.
This virus has also been implicated as a means for bioterrorism, as it can be spread through aerosols.
As for other flavivirus infections, no cure is known for yellow fever. Hospitalization is advisable and intensive care may be necessary because of rapid deterioration in some cases. Different methods for acute treatment of the disease have been shown not to be very successful; passive immunisation after emergence of symptoms is probably without effect. Ribavirin and other antiviral drugs, as well as treatment with interferons, do not have a positive effect in patients.
A symptomatic treatment includes rehydration and pain relief with drugs such as paracetamol (acetaminophen in the United States). Acetylsalicylic acid (aspirin) should not be given because of its anticoagulant effect, which can be devastating in the case of internal bleeding that can occur with yellow fever.
Viral disease is usually detected by clinical presentation, for instance severe muscle and joint pains preceding fever, or skin rash and swollen lymph glands.
Laboratory investigation is not directly effective in detecting viral infections, because they do not themselves increase the white blood cell count. Laboratory investigation may be useful in diagnosing associated bacterial infections, however.
Viral infections are commonly of limited duration, so treatment usually consists in reducing the symptoms; antipyretic and analgesic drugs are commonly prescribed.
Most of the time, Zika fever resolves on its own in 2 to 7 days, but rarely, some people develop Guillain–Barré syndrome. The fetus of a pregnant woman who has Zika fever may die or be born with congenital central nervous system malformations, like microcephaly.
There is usually an indication for a specific identification of an infectious agent only when such identification can aid in the treatment or prevention of the disease, or to advance knowledge of the course of an illness prior to the development of effective therapeutic or preventative measures. For example, in the early 1980s, prior to the appearance of AZT for the treatment of AIDS, the course of the disease was closely followed by monitoring the composition of patient blood samples, even though the outcome would not offer the patient any further treatment options. In part, these studies on the appearance of HIV in specific communities permitted the advancement of hypotheses as to the route of transmission of the virus. By understanding how the disease was transmitted, resources could be targeted to the communities at greatest risk in campaigns aimed at reducing the number of new infections. The specific serological diagnostic identification, and later genotypic or molecular identification, of HIV also enabled the development of hypotheses as to the temporal and geographical origins of the virus, as well as a myriad of other hypothesis. The development of molecular diagnostic tools have enabled physicians and researchers to monitor the efficacy of treatment with anti-retroviral drugs. Molecular diagnostics are now commonly used to identify HIV in healthy people long before the onset of illness and have been used to demonstrate the existence of people who are genetically resistant to HIV infection. Thus, while there still is no cure for AIDS, there is great therapeutic and predictive benefit to identifying the virus and monitoring the virus levels within the blood of infected individuals, both for the patient and for the community at large.
Murray Valley encephalitis virus (MVEV) is a zoonotic flavivirus endemic to northern Australia and Papua New Guinea. It is the causal agent of Murray Valley encephalitis (previously known as Australian encephalitis or Australian X disease). In humans it can cause permanent neurological disease or death. MVEV is related to Kunjin virus which has a similar ecology but a lower morbidity rate. Although the arbovirus is endemic to Northern Australia, it has occasionally spread to the southern states during times of heavy rainfall during the summer monsoon season via seasonal flooding of the Murray-Darling river system. These outbreaks can be "...decades apart, with no or very few cases identified in between".
The Coggins test (agar immunodiffusion) is a sensitive diagnostic test for equine infectious anemia developed by Dr. Leroy Coggins in the 1970s.
Currently, the US does not have an eradication program due to the low rate of incidence. However, many states require a negative Coggins test for interstate travel. In addition, most horse shows and events require a negative Coggins test. Most countries require a negative test result before allowing an imported horse into the country.
Horse owners should verify that all the horses at a breeding farm and or boarding facility have a negative Coggins test before using the services of the facility. A Coggins test should be done on an annual basis. Tests every 6 months are recommended if there is increased traveling.
Rocio viral encephalitis is an epidemic flaviviral disease of humans first observed in São Paulo State, Brazil, in 1975. Low-level enzootic transmission is likely continuing in the epidemic zone, and with increased deforestation and population expansion, additional epidemics caused by Rocio virus are highly probable. If migratory species of birds are, or become involved in, the virus transmission cycle, the competency of a wide variety of mosquito species for transmitting Rocio virus experimentally suggest that the virus may become more widely distributed. The encephalitis outbreak in the western hemisphere caused by West Nile virus, a related flavivirus, highlights the potential for arboviruses to cause severe problems far from their source enzootic foci.
The causative Rocio virus belongs to the genus "Flavivirus" (the same genus as the Zika virus) in family Flaviviridae and is closely related serologically to Ilhéus, St. Louis encephalitis, Japanese encephalitis and Murray Valley encephalitis viruses.
Tick-borne encephalitis (TBE) is a viral infectious disease involving the central nervous system. The disease most often manifests as meningitis, encephalitis, or meningoencephalitis. Although TBE is most commonly recognized as a neurological disorder, mild fever can also occur. Long-lasting or permanent neuropsychiatric consequences are observed in 10 to 20% of infected patients.
The number of reported cases has been increasing in most countries.
The tick-borne encephalitis virus is known to infect a range of hosts including ruminants, birds, rodents, carnivores, horses, and humans. The disease can also be spread from animals to humans, with ruminants and dogs providing the principal source of infection for humans.
TBE, like Lyme disease, is one of the many tick-borne diseases.
The scientific study of the genetics of MVEV has been facilitated by the construction and manipulation of an infectious cDNA clone of the virus.
West Nile virus (WNV) is a single-stranded RNA virus that causes West Nile fever. It is a member of the family Flaviviridae, specifically from the genus Flavivirus which also contain the Zika virus, dengue virus, and the yellow fever virus. The West Nile virus is primarily transmitted through mosquitoes, mostly by the Culex species. However, ticks have been found to carry the virus. The primary hosts of WNV are birds, so that the virus remains within a "bird-mosquito-bird" transmission cycle.
Methicillin-resistant Staphylococcus aureus (MRSA) evolved from Methicillin-susceptible Staphylococcus aureus (MSSA) otherwise known as common "S. aureus". Many people are natural carriers of "S. aureus", without being affected in any way. MSSA was treatable with the antibiotic methicillin until it acquired the gene for antibiotic resistance. Though genetic mapping of various strains of MRSA, scientists have found that MSSA acquired the mecA gene in the 1960s, which accounts for its pathogenicity, before this it had a predominantly commensal relationship with humans. It is theorized that when this "S. aureus" strain that had acquired the mecA gene was introduced into hospitals, it came into contact with other hospital bacteria that had already been exposed to high levels of antibiotics. When exposed to such high levels of antibiotics, the hospital bacteria suddenly found themselves in an environment that had a high level of selection for antibiotic resistance, and thus resistance to multiple antibiotics formed within these hospital populations. When "S. aureus" came into contact with these populations, the multiple genes that code for antibiotic resistance to different drugs were then acquired by MRSA, making it nearly impossible to control. It is thought that MSSA acquired the resistance gene through the horizontal gene transfer, a method in which genetic information can be passed within a generation, and spread rapidly through its own population as was illustrated in multiple studies. Horizontal gene transfer speeds the process of genetic transfer since there is no need to wait an entire generation time for gene to be passed on. Since most antibiotics do not work on MRSA, physicians have to turn to alternative methods based in Darwinian medicine. However prevention is the most preferred method of avoiding antibiotic resistance. By reducing unnecessary antibiotic use in human and animal populations, antibiotics resistance can be slowed.
Outbreaks of zoonoses have been traced to human interaction with and exposure to animals at fairs, petting zoos, and other settings. In 2005, the Centers for Disease Control and Prevention (CDC) issued an updated list of recommendations for preventing zoonosis transmission in public settings. The recommendations, developed in conjunction with the National Association of State Public Health Veterinarians, include educational responsibilities of venue operators, limiting public and animal contact, and animal care and management.
Currently, no treatment is available.
Good husbandry measures, such as high water quality, low stocking density, and no mixing of batches, help to reduce disease incidence. To eradicate the disease, very strict protocol with regards to movement, water sources and stock replacement must be in place – and still it is difficult to achieve and comes at a high economic cost.
Powassan encephalitis, caused by the Powassan virus (POWV), as flavivirus also known as the deer tick virus, is a form of arbovirus infection that results from tick bites. It can occur as a co-infection with Lyme disease since both are transmitted to humans by the same species of tick. There has been a surge in the number of cases and geographic range in the last decade. In the United States, cases have been recorded in the northeast. The disease was first isolated from the brain of a boy who died of encephalitis in Powassan, Ontario, in 1958. The disease is a zoonosis, an animal disease, usually found in rodents and ticks, with spillover transmission to humans. The virus is antigenically related to the Far Eastern tick-borne encephalitis viruses.
A viral disease (or viral infection) occurs when an organism's body is invaded by pathogenic viruses, and infectious virus particles (virions)
attach to and enter susceptible cells.