Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The recommended treatment of new-onset pulmonary tuberculosis, as of 2010, is six months of a combination of antibiotics containing rifampicin, isoniazid, pyrazinamide, and ethambutol for the first two months, and only rifampicin and isoniazid for the last four months. Where resistance to isoniazid is high, ethambutol may be added for the last four months as an alternative.
If tuberculosis recurs, testing to determine which antibiotics it is sensitive to is important before determining treatment. If multiple drug-resistant TB (MDR-TB) is detected, treatment with at least four effective antibiotics for 18 to 24 months is recommended.
It is currently recommended that HIV-infected individuals with TB receive combined treatment for both diseases, irrespective of CD4+ cell count. ART (Anti Retroviral Therapy) along with ATT (Anti Tuberculosis Treatment) is the only available treatment in present time. Though the timing of starting ART is the debatable question due to the risk of immune reconstitution inflammatory syndrome (IRIS). The advantages of early ART include reduction in early mortality, reduction in relapses, preventing drug resistance to ATT and reduction in occurrence of HIV-associated infections other than TB. The disadvantages include cumulative toxicity of ART and ATT, drug interactions leading to inflammatory reactions are the limiting factors for choosing the combination of ATT and ART.
A systematic review investigated the optimal timing of starting antiretroviral therapy in adults with newly diagnosed pulmonary tuberculosis. The review authors included eight trials, that were generally well-conducted, with over 4500 patients in total. The early provision of antiretroviral therapy in HIV-infected adults with newly diagnosed tuberculosis improved survival in patients who had a low CD4 count (less than 0.050 x 109 cells/L). However, such therapy doubled the risk for IRIS. Regarding patients with higher CD4 counts (more than 0.050 x 109 cells/L), the evidence is not sufficient to make a conclusion about benefits or risks of early antiretroviral therapy.
Usually, multidrug-resistant tuberculosis can be cured with long treatments of second-line drugs, but these are more expensive than first-line drugs and have more adverse effects. The treatment and prognosis of MDR-TB are much more akin to those for cancer than to those for infection. MDR-TB has a mortality rate of up to 80%, which depends on a number of factors, including
1. How many drugs the organism is resistant to (the fewer the better)
2. How many drugs the patient is given (patients treated with five or more drugs do better)
3. Whether an injectable drug is given or not (it should be given for the first three months at least)
4. The expertise and experience of the physician responsible
5. How co-operative the patient is with treatment (treatment is arduous and long, and requires persistence and determination on the part of the patient)
6. Whether the patient is HIV positive or not (HIV co-infection is associated with an increased mortality).
The majority of patients suffering from multi-drug-resistant tuberculosis do not receive treatment, as they are found in underdeveloped countries or in poverty. Denial of treatment remains a difficult human rights issue, as the high cost of second-line medications often precludes those who cannot afford therapy.
A study of cost-effective strategies for tuberculosis control supported three major policies. First, the treatment of smear-positive cases in DOTS programs must be the foundation of any tuberculosis control approach, and should be a basic practice for all control programs. Second, there is a powerful economic case for treating smear-negative and extra-pulmonary cases in DOTS programs along with treating smear-negative and extra-pulmonary cases in DOTS programs as a new WHO “STOP TB” approach and the second global plan for tuberculosis control. Last, but not least, the study shows that significant scaling up of all interventions is needed in the next 10 years if the millennium development goal and related goals for tuberculosis control are to be achieved. If the case detection rate can be improved, this will guarantee that people who gain access to treatment facilities are covered and that coverage is widely distributed to people who do not now have access.
In general, treatment courses are measured in months to years; MDR-TB may require surgery, and death rates remain high despite optimal treatment. However, good outcomes for patients are still possible.
The treatment of MDR-TB must be undertaken by physicians experienced in the treatment of MDR-TB. Mortality and morbidity in patients treated in non-specialist centers are significantly higher to those of patients treated in specialist centers. Treatment of MDR-TB must be done on the basis of sensitivity testing: it is impossible to treat such patients without this information. When treating a patient with suspected MDR-TB, pending the result of laboratory sensitivity testing, the patient could be started on SHREZ (Streptomycin+ isonicotinyl Hydrazine+ Rifampicin+Ethambutol+ pyraZinamide) and moxifloxacin with cycloserine. There is evidence that previous therapy with a drug for more than a month is associated with diminished efficacy of that drug regardless of "in vitro" tests indicating susceptibility. Hence, a detailed knowledge of the treatment history of each patient is essential. In addition to the obvious risks (i.e., known exposure to a patient with MDR-TB), risk factors for MDR-TB include HIV infection, previous incarceration, failed TB treatment, failure to respond to standard TB treatment, and relapse following standard TB treatment.
A gene probe for "rpoB" is available in some countries. This serves as a useful marker for MDR-TB, because isolated RMP resistance is rare (except when patients have a history of being treated with rifampicin alone). If the results of a gene probe ("rpoB") are known to be positive, then it is reasonable to omit RMP and to use SHEZ+MXF+cycloserine. The reason for maintaining the patient on INH is that INH is so potent in treating TB that it is foolish to omit it until there is microbiological proof that it is ineffective (even though isoniazid resistance so commonly occurs with rifampicin resistance).
When sensitivities are known and the isolate is confirmed as resistant to both INH and RMP, five drugs should be chosen in the following order (based on known sensitivities):
- an aminoglycoside (e.g., amikacin, kanamycin) or polypeptide antibiotic (e.g., capreomycin)
- pyrazinamide
- ethambutol
- a fluoroquinolone (e.g., moxifloxacin (ciprofloxacin) should no longer be used);
- rifabutin
- cycloserine
- a thioamide: prothionamide or ethionamide
- PAS
- a macrolide: e.g., clarithromycin
- linezolid
- high-dose INH (if low-level resistance)
- interferon-γ
- thioridazine
- Ampicillin
"Note:" Drugs placed nearer the top of the list are more effective and less toxic; drugs placed nearer the bottom of the list are less effective or more toxic, or more difficult to obtain.
In general, resistance to one drug within a class means resistance to all drugs within that class, but a notable exception is rifabutin: Rifampicin-resistance does not always mean rifabutin-resistance, and the laboratory should be asked to test for it. It is possible to use only one drug within each drug class. If it is difficult finding five drugs to treat then the clinician can request that high-level INH-resistance be looked for. If the strain has only low-level INH-resistance (resistance at 0.2 mg/l INH, but sensitive at 1.0 mg/l INH), then high dose INH can be used as part of the regimen. When counting drugs, PZA and interferon count as zero; that is to say, when adding PZA to a four-drug regimen, another drug must be chosen to make five. It is not possible to use more than one injectable (STM, capreomycin or amikacin), because the toxic effect of these drugs is additive: If possible, the aminoglycoside should be given daily for a minimum of three months (and perhaps thrice weekly thereafter). Ciprofloxacin should not be used in the treatment of tuberculosis if other fluoroquinolones are available.
There is no intermittent regimen validated for use in MDR-TB, but clinical experience is that giving injectable drugs for five days a week (because there is no-one available to give the drug at weekends) does not seem to result in inferior results. Directly observed therapy helps to improve outcomes in MDR-TB and should be considered an integral part of the treatment of MDR-TB.
Response to treatment must be obtained by repeated sputum cultures (monthly if possible). Treatment for MDR-TB must be given for a minimum of 18 months and cannot be stopped until the patient has been culture-negative for a minimum of nine months. It is not unusual for patients with MDR-TB to be on treatment for two years or more.
Patients with MDR-TB should be isolated in negative-pressure rooms, if possible. Patients with MDR-TB should not be accommodated on the same ward as immunosuppressed patients (HIV-infected patients, or patients on immunosuppressive drugs). Careful monitoring of compliance with treatment is crucial to the management of MDR-TB (and some physicians insist on hospitalisation if only for this reason). Some physicians will insist that these patients remain isolated until their sputum is smear-negative, or even culture-negative (which may take many months, or even years). Keeping these patients in hospital for weeks (or months) on end may be a practical or physical impossibility, and the final decision depends on the clinical judgement of the physician treating that patient. The attending physician should make full use of therapeutic drug monitoring (in particular, of the aminoglycosides) both to monitor compliance and to avoid toxic effects.
Some supplements may be useful as adjuncts in the treatment of tuberculosis, but, for the purposes of counting drugs for MDR-TB, they count as zero (if four drugs are already in the regimen, it may be beneficial to add arginine or vitamin D or both, but another drug will be needed to make five).
- arginine (peanuts are a good source)
- vitamin D
- Dzherelo
- V5 Immunitor
The drugs listed below have been used in desperation, and it is uncertain as to whether they are effective at all. They are used when it is not possible to find five drugs from the list above.
- imipenem
- co-amoxiclav
- clofazimine
- prochlorperazine
- metronidazole
On December 28, 2012 the U.S. Food and Drug Administration (FDA) approved bedaquiline (marketed as Sirturo by Johnson & Johnson) to treat multi-drug resistant tuberculosis, the first new treatment in 40 years. Sirturo is to be used in a combination therapy for patients who have failed standard treatment and have no other options. Sirturo is an adenosine triphosphate synthase (ATP synthase) inhibitor.
The following drugs are experimental compounds that are not commercially available, but may be obtained from the manufacturer as part of a clinical trial or on a compassionate basis. Their efficacy and safety are unknown:
- pretomanid (manufactured by Novartis, developed in partnership with TB Alliance)
- delamanid
In cases of extremely resistant disease, surgery to remove infection portions of the lung is, in general, the final option. The center with the largest experience in this is the National Jewish Medical and Research Center in Denver, Colorado. In 17 years of experience, they have performed 180 operations; of these, 98 were lobectomies and 82 were pneumonectomies. There is a 3.3% operative mortality, with an additional 6.8% dying following the operation; 12% experienced significant morbidity (in particular, extreme breathlessness). Of 91 patients who were culture-positive before surgery, only 4 were culture-positive after surgery.
The resurgence of tuberculosis in the United States, the advent of HIV-related tuberculosis, and the development of strains of TB resistant to the first-line therapies developed in recent decades—serve to reinforce the thesis that Mycobacterium tuberculosis, the causative organism, makes its own preferential option for the poor. The simple truth is that almost all tuberculosis deaths result from a lack of access to existing effective therapy.
The standard treatment recommended by the WHO is with isoniazid and rifampicin for six months, as well as ethambutol and pyrazinamide for the first two months. If there is evidence of meningitis, then treatment is extended to twelve months. The U.S. guidelines recommend nine months' treatment. "Common medication side effects a patient may have such as inflammation of the liver if a patient is taking pyrazinamide, rifampin, and isoniazid. A patient may also have drug resistance to medication, relapse, respiratory failure, and adult respiratory distress syndrome."
People with AIDS are given macrolide antibiotics such as azithromycin for prophylactic treatment.
People with HIV infection and less than 50 CD4+ T-lymphocytes/uL should be administered prophylaxis against MAC. Prophylaxis should be continued for the patient's lifetime unless multiple drug therapy for MAC becomes necessary because of the development of MAC disease.
Clinicians must weigh the potential benefits of MAC prophylaxis against the potential for toxicities and drug interactions, the cost, the potential to produce resistance in a community with a high rate of tuberculosis, and the possibility that the addition of another drug to the medical regimen may adversely affect patients' compliance with treatment. Because of these concerns, therefore, in some situations rifabutin prophylaxis should not be administered.
Before prophylaxis is administered, patients should be assessed to ensure that they do not have active disease due to MAC, M. tuberculosis, or any other mycobacterial species. This assessment may include a chest radiograph and tuberculin skin test.
Rifabutin, by mouth daily, is recommended for the people's lifetime unless disseminated MAC develops, which would then require multiple drug therapy. Although other drugs, such as azithromycin and clarithromycin, have laboratory and clinical activity against MAC, none has been shown in a prospective, controlled trial to be effective and safe for prophylaxis. Thus, in the absence of data, no other regimen can be recommended at this time.The 300-mg dose of rifabutin has been well tolerated. Adverse effects included neutropenia, thrombocytopenia, rash, and gastrointestinal disturbances.
When HIV-negative children take isoniazid after they have been exposed to tuberculosis, their risk to contract tuberculosis is reduced. A Cochrane review investigated whether giving isoniazid to HIV-positive children can help to prevent this vulnerable group from getting tuberculosis. They included three trials conducted in South Africa and Botswana and found that isoniazid given to all children diagnosed with HIV may reduce the risk of active tuberculosis and death in children who are not on antiretroviral treatment. For children taking antiretroviral medication, no clear benefit was detected.
Postinfection treatment involves a combination of antituberculosis antibiotics, including rifampicin, rifabutin, ciprofloxacin, amikacin, ethambutol, streptomycin, clarithromycin or azithromycin.
NTM infections are usually treated with a three-drug regimen of either clarithromycin or azithromycin, plus rifampicin and ethambutol. Treatment typically lasts at least 12 months.
Although studies have not yet identified an optimal regimen or confirmed that any therapeutic regimen produces sustained clinical benefit for patients with disseminated MAC, the Task Force concluded that the available information indicated the need for treatment of disseminated MAC. The Public Health Service therefore recommends that regimens be based on the following principles:
- Treatment regimens outside a clinical trial should include at least two agents.
- Every regimen should contain either azithromycin or clarithromycin; many experts prefer ethambutol as a second drug. Many clinicians have added one or more of the following as second, third, or fourth agents: clofazimine, rifabutin, rifampin, ciprofloxacin, and in some situations amikacin. Isoniazid and pyrazinamide are not effective for the therapy of MAC.
- Therapy should continue for the lifetime of the patient if clinical and microbiologic improvement is observed.
Clinical manifestations of disseminated MAC—such as fever, weight loss, and night sweats—should be monitored several times during the initial weeks of therapy. Microbiologic response, as assessed by blood culture every 4 weeks during initial therapy, can also be helpful in interpreting the efficacy of a therapeutic regimen.Most patients who ultimately respond show substantial clinical improvement in the first 4–6 weeks of therapy. Elimination of the organisms from blood cultures may take somewhat longer, often requiring 4–12 weeks.
There are several ways that drug resistance to TB, and drug resistance in general, can be prevented:
1. Rapid diagnosis & treatment of TB: One of the greatest risk factors for drug resistant TB is problems in treatment and diagnosis, especially in developing countries. If TB is identified and treated soon, drug resistance can be avoided.
2. Completion of treatment: Previous treatment of TB is an indicator of MDR TB. If the patient does not complete his/her antibiotic treatment, or if the physician does not prescribe the proper antibiotic regimen, resistance can develop. Also, drugs that are of poor quality or less in quantity, especially in developing countries, contribute to MDR TB.
3. Patients with HIV/AIDS should be identified and diagnosed as soon as possible. They lack the immunity to fight the TB infection and are at great risk of developing drug resistance.
4. Identify contacts who could have contracted TB: i.e. family members, people in close contact, etc.
5. Research: Much research and funding is needed in the diagnosis, prevention and treatment of TB and MDR TB.
"Opponents of a universal tuberculosis treatment, reasoning from misguided notions of cost-effectiveness, fail to acknowledge that MDRTB is not a disease of poor people in distant places. The disease is infectious and airborne. Treating only one group of patients looks inexpensive in the short run, but will prove disastrous for all in the long run."- Paul Farmer
The chances of drug resistance can sometimes be minimized by using multiple drugs simultaneously. This works because individual mutations can be independent and may tackle only one drug at a time; if the individuals are still killed by the other drugs, then the mutations cannot persist. This was used successfully in tuberculosis. However, cross resistance where mutations confer resistance to two or more treatments can be problematic.
For antibiotic resistance, which represents a widespread problem nowadays, drugs designed to block the mechanisms of bacterial antibiotic resistance are used. For example, bacterial resistance against beta-lactam antibiotics (such as penicillins and cephalosporins) can be circumvented by using antibiotics such as nafcillin that are not susceptible to destruction by certain beta-lactamases (the group of enzymes responsible for breaking down beta-lactams). Beta-lactam bacterial resistance can also be dealt with by administering beta-lactam antibiotics with drugs that block beta-lactamases such as clavulanic acid so that the antibiotics can work without getting destroyed by the bacteria first. Recently, researchers have recognized the need for new drugs that inhibit bacterial efflux pumps, which cause resistance to multiple antibiotics such as beta-lactams, quinolones, chloramphenicol, and trimethoprim by sending molecules of those antibiotics out of the bacterial cell. Sometimes a combination of different classes of antibiotics may be used synergistically; that is, they work together to effectively fight bacteria that may be resistant to one of the antibiotics alone.
Destruction of the resistant bacteria can also be achieved by phage therapy, in which a specific bacteriophage (virus that kills bacteria) is used.
There is research being done using antimicrobial peptides. In the future, there is a possibility that they might replace novel antibiotics.
Several antibiotics are available for the treatment of redmouth disease in fish. Vaccines can also be used in the treatment and prevention of disease. Management factors such as maintaining water quality and a low stocking density are essential for disease prevention.
There is no specific vaccine for "Myocobacterium ulcerans". The Bacillus Calmette-Guérin vaccine may offer temporary protection.
If left untreated, miliary tuberculosis is almost always fatal. Although most cases of miliary tuberculosis are treatable, the mortality rate among children with miliary tuberculosis remains 15 to 20% and for adults 25 to 30%. One of the main causes for these high mortality rates includes late detection of disease caused by non-specific symptoms. Non-specific symptoms include: coughing, weight loss, or organ dysfunction. These symptoms may be implicated in numerous disorders, thus delaying diagnosis. Misdiagnosis with tuberculosis meningitis is also a common occurrence when patients are tested for tuberculosis, since the two forms of tuberculosis have high rates of co-occurrence.
If treated early antibiotics for eight weeks are effective in 80% of people. This often includes the medications rifampicin and streptomycin. Clarithromycin or moxifloxacin are sometimes used instead of streptomycin.
Treatment may also include cutting out the ulcer. This may be a minor operation and very successful if undertaken early. Advanced disease may require prolonged treatment with extensive skin grafting. Surgical practice can be dangerous in the developing countries where the disease is common.
Quaternary ammonium compounds can be added to the water of infected adult fish and fry. Alternatively, the antibiotic oxytetracycline can be given to adults, fry and broodstock. To prevent the disease, it is necessary to ensure water is pathogen-free and that water hardening is completed effectively for eggs.
Therapy for cutaneous tuberculosis is the same as for systemic tuberculosis, and usually consists of a 4-drug regimen, i.e., isoniazid, rifampin, pyrazinamide, and ethambutol or streptomycin.
As "Flavobacterium columnare" is Gram-negative, fish can be treated with a combination of the antibiotics furan-2 and kanamycin administered together. A medicated fish bath (using methylene blue or potassium permanganate and salt), is generally a first step, as well lowering the aquarium temperature to 75 °F (24 °C) is a must, since columnaris is much more virulent at higher temperatures, especially 85–90 °F.
Medicated food containing oxytetracycline is also an effective treatment for internal infections, but resistance is emerging. Potassium permanganate, copper sulfate, and hydrogen peroxide can also be applied externally to adult fish and fry, but can be toxic at high concentrations. Vaccines can also be given in the face of an outbreak or to prevent disease occurrence.
Currently, no treatment is available.
Good husbandry measures, such as high water quality, low stocking density, and no mixing of batches, help to reduce disease incidence. To eradicate the disease, very strict protocol with regards to movement, water sources and stock replacement must be in place – and still it is difficult to achieve and comes at a high economic cost.
The treatment of choice is a single dose of benzathine benzylpenicillin given by intramuscular injection, or a five-day to one-week course of either oral penicillin or intramuscular procaine benzylpenicillin. Erythromycin or doxycycline may be given instead to people who are allergic to penicillin. "E. rhusiopathiae" is intrinsically resistant to vancomycin.
Tuberculoma is commonly treated through the HRZE drug combination (Isoniazid, Rifampin, Pyrazinamide, Ethambutol) followed by maintenance therapy.
Upon diagnosis, treatment is quite simple and effective. The standard treatment for diphyllobothriasis, as well as many other tapeworm infections is a single dose of praziquantel, 5–10 mg/kg orally once for both adults and children. An alternative treatment is niclosamide, 2 g orally once for adults or 50 mg/kg (max 2 g) for children. Praziquantel is not FDA-approved for this indication and niclosamide is not available for human or even animal use in the United States. Reportedly, albendazole can also be effective. Another interesting potential diagnostic tool and treatment is the contrast medium, Gastrografin, introduced into the duodenum, which allows both visualization of the parasite, and has also been shown to cause detachment and passing of the whole worm.
A diagnosis of latent tuberculosis (LTB), also called latent tuberculosis infection (LTBI) means a patient is infected with "Mycobacterium tuberculosis", but the patient does not have active tuberculosis. Active tuberculosis can be contagious while latent tuberculosis is not, and it is therefore not possible to get TB from someone with latent tuberculosis. The main risk is that approximately 10% of these patients (5% in the first two years after infection and 0.1% per year thereafter) will go on to develop active tuberculosis. This is particularly true, and there is added risk, in particular situations such as medication that suppresses the immune system or advancing age.
The identification and treatment of people with latent TB is an important part of controlling this disease. Various treatment regimens are in use to treat latent tuberculosis, which generally need to be taken for several months.
In some cases the causes of an infection or disease will be obvious (such as fin rot), though in other cases it may be due to water conditions, requiring special testing equipment and chemicals to appropriately adjust the water. Isolating diseased fish can help prevent the spread of infection to healthy fish in the tank. This also allows the use of chemicals or drugs which may damage the nitrogen cycle, plants or chemical filtration of a properly-functioning tank. Other alternatives include short baths in a bucket that contains the treated water. Salt baths can be used as an antiseptic and fungicide, and will not damage beneficial bacteria, though ordinary table salt may contain additives which can harm fish. Alternatives include aquarium salt, Kosher salt or rock salt. Gradually raising the temperature of the tank may kill certain parasites, though some diseased fish may be harmed and certain species can not tolerate high temperatures. Aeration is necessary since less oxygen is dissolved in warm water.
There are a number of effective treatments for many stains of bacterial infections. Three of the most common are tetracycline, penicillin and naladixic acid. Salt baths are another effective treatment.
There is no effective treatment or antidote for ciguatera poisoning. The mainstay of treatment is supportive care. There is some evidence that calcium channel blockers like nifedipine and verapamil are effective in treating some of the symptoms that remain after the initial sickness passes, such as poor circulation and shooting pains through the chest. These symptoms are due to the cramping of arterial walls caused by maitotoxin Ciguatoxin lowers the threshold for opening voltage-gated sodium channels in synapses of the nervous system. Opening a sodium channel causes depolarization, which could sequentially cause paralysis, heart contraction, and changing the senses of hot and cold. Some medications such as amitriptyline may reduce some symptoms, such as fatigue and paresthesia, although benefit does not occur in every case.
Mannitol was once used for poisoning after one study reported symptom reversal. Follow-up studies in animals and case reports in humans also found benefit from mannitol. However, a randomized, double-blind clinical trial found no difference between mannitol and normal saline, and based on this result, mannitol is no longer recommended.
Long term management of chronic Ciguatera includes avoiding trigger food and environmental triggers, and managing symptoms with medications and or lifestyle.
Caution may be needed with anesthesia and should be discussed with your healthcare providers.
Praziquantel is recommended in both adult and pediatric cases with dosages of 75 mg/kg/d in 3 doses for 1 day. Praziquantel is a Praziniozoquinoline derivative that alters the calcium flux through the parasite tectum and causes muscular paralysis and detachment of the fluke. Prizaquantel should be taken with liquids during a meal and as provided commercially as Biltricide. Praziquantel is not approved by the U.S. Food and Drug Administration (FDA) for treatment of metagonimiasis, but is approved for use on other parasitic infections.
Praziquantel has some side effects but they are generally relatively mild and transient and a review of evidence shows it overall a well-tolerated drug. Possible side effects include abdominal pain, allergy, diarrhea, headache, liver problems, nausea or vomiting, exacerbation of porphyries, pruritis, rash, somnolence, vertigo, or dizziness. In fact, in 2002, the World Health Organization recommended the use of Praziquantel in pregnant and lactating women, though controlled trials are still needed to verify this.
Another possible drug option is Tetrachloroethylene, a chlorinated hydrocarbon, but its use has been superseded by new antihelminthic drugs (like Praziquantel). A 1978 study also looked at the efficacy of several drugs on metagonimiasis infection, including bithionol, niclosamide, nicoflan, and Praziquantel. All drugs showed lower prevalence of eggs in feces, however only Praziquantel showed complete radical cure. Therefore, the authors concluded Praziquantel was the most highly effective, was very well tolerated, and was the most promising drug against metagonimiasis.