Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Chondroblastoma has not been known to spontaneously heal and the standard treatment is surgical curettage of the lesion with bone grafting. To prevent recurrence or complications it is important to excise the entire tumor following strict oncologic criteria. However, in skeletally immature patients intraoperative fluoroscopy may be helpful to avoid destruction of the epiphyseal plate. In patients who are near the end of skeletal growth, complete curettage of the growth plate is an option. In addition to curettage, electric or chemical cauterization (via phenol) can be used as well as cryotherapy and wide or marginal resection. Depending on the size of the subsequent defect, autograft or allograft bone grafts are the preferred filling materials. Other options include substituting polymethylmethacrylate (PMMA) or fat implantation in place of the bone graft. The work of Ramappa "et al" suggests that packing with PMMA may be a more optimal choice because the heat of polymerization of the cement is thought to kill any remaining lesion.
Both radiotherapy and chemotherapy are not commonly used. Radiotherapy has been implemented in chondroblastoma cases that are at increased risk of being more aggressive and are suspected of malignant transformation. Furthermore, radiofrequency ablation has been used, but is typically most successful for small chondroblastoma lesions (approximately 1.5 cm). Treatment with radiofrequency ablation is highly dependent on size and location due to the increased risk of larger, weight-bearing lesions being at an increased risk for articular collapse and recurrence.
Overall, the success and method of treatment is highly dependent upon the location and size of the chondroblastoma.
Curettage is performed on some patients, and is sufficient for inactive lesions. The recurrence rate with curettage is significant in active lesions, and marginal resection has been advised. Liquid nitrogen, phenol, methyl methacrylate are considered for use to kill cells at margins of resected cyst.
Bone lesions in multiple myeloma patients may be treated with low-dose radiation therapy in order to reduce pain and other symptoms. Used in combination with immunochemotherapy, radiation therapy can be used to treat certain cancers when aimed at areas of bone lesion and softened bone.
Depending on the pet's unique condition, there are several treatment options, including surgery, chemotherapy and radiation therapy. Treating the pain adequately is also of crucial importance to improve the pet's quality of life, especially if amputation is not performed.
Biophosphonates are drugs that are used to prevent bone mass loss and are often used to treat osteolytic lesions. Zoledronic acid (Reclast) is a specific drug given to cancer patients to prevent the worsening of bone lesions and has been reported to have anti-tumor effects as well. Zoledronic acid has been clinically tested in conjunction with calcium and vitamin D to encourage bone health. Denosumab, a monoclonal antibody treatment RANKl inhibitor that targets the osteocyte apoptosis regualtory RANKL gene, is also prescribed to prevent bone metastases and bone lesions. Most biophosphonates are co-prescribed with disease-specific treatments, such as chemotherapy or radiation for cancer patients.
A complete radical, surgical, "en bloc" resection of the cancer, is the treatment of choice in osteosarcoma. Although about 90% of patients are able to have limb-salvage surgery, complications, particularly infection, prosthetic loosening and non-union, or local tumor recurrence may cause the need for further surgery or amputation.
Mifamurtide is used after a patient has had surgery to remove the tumor and together with chemotherapy to kill remaining cancer cells to reduce the risk of cancer recurrence. Also, the option to have rotationplasty after the tumor is taken out exists.
Patients with osteosarcoma are best managed by a medical oncologist and an orthopedic oncologist experienced in managing sarcomas. Current standard treatment is to use neoadjuvant chemotherapy (chemotherapy given before surgery) followed by surgical resection. The percentage of tumor cell necrosis (cell death) seen in the tumor after surgery gives an idea of the prognosis and also lets the oncologist know if the chemotherapy regimen should be altered after surgery.
Standard therapy is a combination of limb-salvage orthopedic surgery when possible (or amputation in some cases) and a combination of high-dose methotrexate with leucovorin rescue, intra-arterial cisplatin, adriamycin, ifosfamide with mesna, BCD (bleomycin, cyclophosphamide, dactinomycin), etoposide, and muramyl tripeptide. Rotationplasty may be used. Ifosfamide can be used as an adjuvant treatment if the necrosis rate is low.
Despite the success of chemotherapy for osteosarcoma, it has one of the lowest survival rates for pediatric cancer. The best reported 10-year survival rate is 92%; the protocol used is an aggressive intra-arterial regimen that individualizes therapy based on arteriographic response. Three-year event-free survival ranges from 50% to 75%, and five-year survival ranges from 60% to 85+% in some studies. Overall, 65–70% patients treated five years ago will be alive today. These survival rates are overall averages and vary greatly depending on the individual necrosis rate.
Filgrastim or pegfilgrastim help with white blood cell counts and neutrophil counts. Blood transfusions and epoetin alfa help with anemia. Computational analysis on a panel of Osteosarcoma cell lines identified new shared and specific therapeutic targets (proteomic and genetic) in Osteosarcoma, while phenotypes showed an increased role of tumor microenvironments.
Depending on the severity of the deformities, the treatment may include the amputation of the foot or part of the leg, lengthening of the femur, extension prosthesis, or custom shoe lifts. Amputation usually requires the use of prosthesis. Another alternative is a rotationplasty procedure, also known as Van Ness surgery. In this situation the foot and ankle are surgically removed, then attached to the femur. This creates a functional "knee joint". This allows the patient to be fit with a below knee prosthesis vs a traditional above knee prosthesis.
In less severe cases, the use of an Ilizarov apparatus can be successful in conjunction with hip and knee surgeries (depending on the status of the femoral head/kneecap) to extend the femur length to normal ranges. This method of treatment can be problematic in that the Ilizarov might need to be applied both during early childhood (to keep the femur from being extremely short at the onset of growth) and after puberty (to match leg lengths after growth has ended). The clear benefit of this approach, however, is that no prosthetics are needed and at the conclusion of surgical procedures the patient will not be biologically or anatomically different from a person born without PFFD.
Early hip dysplasia can often be treated using a Pavlik harness (see photograph) or the Frejka pillow/splint in the first year of life with usually normal results. Complications can occur when using the Pavlik Harness. Cases of Femoral Nerve Palsy and Avascular Necrosis of the femoral head have been reported with the use of the Pavlik harness, but whether these cases were due to improper application of the device or a complication encountered in the course of the disorder remains unresolved. Complications arise mainly because the sheet of the iliopsoas muscle pushes circumflex artery against the neck of the femur and decreases blood flow to the femoral head, so the Frejka pillow is not indicated in all the forms of the developmental dysplasia of the hip.
Other devices employed include the spica cast, particularly following surgical closed reduction, open reduction, or osteotomy in babies and young children. Traction is sometimes used in the weeks leading up to a surgery to help stretch ligaments in the hip joint, although its use is controversial and varies amongst physicians.
In older children the adductor and iliopsoas muscles may have to be treated surgically because they adapt to the dislocated joint position (contracture).
Braces and splints are often used following either of these methods to continue treatment.
Although some children "outgrow" untreated mild hip dysplasia and some forms of untreated dysplasia cause little or no impairment of quality of life, studies have as yet been unable to find a method of predicting outcomes. On the other hand, it has often been documented that starting treatment late leads to complications and ends in poor results.
The disease can be treated with external in-situ pinning or open reduction and pinning. Consultation with an orthopaedic surgeon is necessary to repair this problem. Pinning the unaffected side prophylactically is not recommended for most patients, but may be appropriate if a second SCFE is very likely.
Once SCFE is suspected, the patient should be non-weight bearing and remain on strict bed rest. In severe cases, after enough rest the patient may require physical therapy to regain strength and movement back to the leg. A SCFE is an orthopaedic emergency, as further slippage may result in occlusion of the blood supply and avascular necrosis (risk of 25 percent). Almost all cases require surgery, which usually involves the placement of one or two pins into the femoral head to prevent further slippage. The recommended screw placement is in the center of the epiphysis and perpendicular to the physis. Chances of a slippage occurring in the other hip are 20 percent within 18 months of diagnosis of the first slippage and consequently the opposite unaffected femur may also require pinning.
The risk of reducing this fracture includes the disruption of the blood supply to the bone. It has been shown in the past that attempts to correct the slippage by moving the head back into its correct position can cause the bone to die. Therefore the head of the femur is usually pinned 'as is'. A small incision is made in the outer side of the upper thigh and metal pins are placed through the femoral neck and into the head of the femur. A dressing covers the wound.
The most common form of treatment is having the tumor surgically removed however total resection is often not possible. The location could prohibit access to the neoplasm and lead to incomplete or no resection at all. Removal of the tumor will generally allow functional survival for many years. In particular for pilocytic astrocytomas (that are commonly indolent bodies that may permit normal neurologic function) surgeons may decide to monitor the neoplasm's evolution and postpone surgical intervention for some time. However, left unattended these tumors may eventually undergo neoplastic transformation.
If surgery is not possible, recommendations such as chemotherapy or radiation be suggested however side effects from these treatments can be extensive and long term.
Simple (Unicameral) Bone Cyst
Some unicameral bone cysts may spontaneously resolve without medical intervention. Specific treatments are determined based on size of the cyst, strength of the bone, medical history, extent of the disease, activity level, symptoms an individual is experiencing, and tolerance for specific medications, procedures, or therapies. The types of methods used to treat this type of cyst are curettage and bone grafting, aspiration, steroid injections, and bone marrow injections. Watchful waiting and activity modifications are the most common nonsurgical treatments that will help resolve and help prevent unicameral bone cysts from occurring and reoccurring.
Aneurysmal Bone Cyst
The aneurysmal bone cyst can be treated with a variety of different methods. These methods include open curettage and bone grafting with or without adjuvant therapy, cryotheraphy, sclerotherapy, ethibloc injections, radionuclide ablation, and selective arterial embolization. En-block resection and reconstruction with strut grafting are the most common treatments and procedures that prevent recurrences of this type of cyst.
Traumatic Bone Cyst
The traumatic bone cyst treatment consists of surgical exploration, curettage of the osseous socket and bony walls, subsequent filling with blood, and intralesional steroid injections. Young athletes can reduce their risk of traumatic bone cyst by wearing protective mouth wear or protective head gear.
They are benign lesions and malignant degeneration is rare. They are usually treated with curettage which however have a high recurrence rate of 25%. As such if an en-bloc resection is possible this is advisable
A variety of methods may be used to treat the most common being the total hip replacement (THR). However, THRs have a number of downsides including long recovery times and short life spans (of the hip joints). THRs are an effective means of treatment in the older population; however, in younger people they may wear out before the end of a person's life.
Other technicques such as metal on metal resurfacing may not be suitable in all cases of avascular necrosis; its suitability depends on how much damage has occurred to the femoral head. Bisphosphonates which reduces the rate of bone breakdown may prevent collapse (specifically of the hip) due to AVN.
Other treatments include core decompression, where internal bone pressure is relieved by drilling a hole into the bone, and a living bone chip and an electrical device to stimulate new vascular growth are implanted; and the free vascular fibular graft (FVFG), in which a portion of the fibula, along with its blood supply, is removed and transplanted into the femoral head. A 2012 Cochrane systematic review noted that no clear improvement can be found between people who have had hip core decompression and participate in physical therapy, versus physical therapy alone. More research is need to look into the effectiveness of hip core decompression for people with sickle cell disease.
Progression of the disease could possibly be halted by transplanting nucleated cells from bone marrow into avascular necrosis lesions after core decompression, although much further research is needed to establish this technique.
Treatment for children with Blount's disease is typically braces but surgery may also be necessary, especially for teenagers. The operation consists of removing a piece of tibia, breaking the fibula and straightening out the bone; there is also a choice of elongating the legs. If not treated early enough, the condition worsens quickly.
Children with cerebellar pilocytic astrocytoma may experience side effects related to the tumor itself depending on the location and related to the treatment. Strabismus.
- Symptoms related to increased pressure in the brain often disappear after surgical removal of the tumor.
- Effects on coordination and balance improved and might progressively (to completely) disappear as recovery progresses.
- Steroid-treatment is often used to control tissue swelling that may occur pre- and post-operatively.
- Children Diagnosed can also suffer long term side effects due to the type of treatment they may receive.
Most hip fractures are treated surgically by implanting an orthosis. Surgical treatment outweighs the risks of nonsurgical treatment which requires extensive bedrest. Prolonged immobilization increases risk of thromboembolism, pneumonia, deconditioning, and decubitus ulcers. Regardless, the surgery is a major stress, particularly in the elderly. Pain is also significant, and can also result in immobilization, so patients are encouraged to become mobile as soon as possible, often with the assistance of physical therapy. Skeletal traction pending surgery is not supported by the evidence. Regional nerve blocks are useful for pain management in hip fractures.
Red blood cell transfusion is common for people undergoing hip fracture surgery due to the blood loss sustained during surgery and from the injury. Adverse effects of blood transfusion may occur and are avoided by restrictive use of blood transfusion rather than liberal use. Restrictive blood transfusion is based on symptoms of anemia and thresholds lower than the 10 g/dL haemoglobin used for liberal blood transfusion.
If operative treatment is refused or the risks of surgery are considered to be too high the main emphasis of treatment is on pain relief. Skeletal traction may be considered for long term treatment. Aggressive chest physiotherapy is needed to reduce the risk of pneumonia and skilled rehabilitation and nursing to avoid pressure sores and DVT/pulmonary embolism Most people will be bedbound for several months. Non-operative treatment is now limited to only the most medically unstable or demented patients, or those who are nonambulatory at baseline with minimal pain during transfers.
Generally, no treatment is required for idiopathic presentation as it is a normal anatomical variant in young children. Treatment is indicated when it persists beyond 3 and a half years old. In the case of unilateral presentation or progressive worsening of the curvature, when caused by rickets, the most important thing is to treat the constitutional disease, at the same time instructing the care-giver never to place the child on its feet. In many cases this is quite sufficient in itself to effect a cure, but matters can be hastened somewhat by applying splints. When the deformity arises in older patients, either from trauma or occupation, the only permanent treatment is surgery, but orthopaedic bracing can provide relief.
Available evidence suggests that treatment depends on the part of the femur that is fractured. Traction may be useful for femoral shaft fractures because it counteracts the force of the muscle pulling the two separated parts together, and thus may decrease bleeding and pain. Traction should not be used in femoral neck fractures or when there is any other trauma to the leg or pelvis. It is typically only a temporary measure used before surgery. It only considered definitive treatment for patients with significant comorbidities that contraindicate surgical management.
External fixators can be used to prevent further damage to the leg until the patient is stable enough for surgery. It is most commonly used as a temporary measure. However, for some select cases it may be used as an alternative to intramedullary nailing for definitive treatment.
Amputation is the initial treatment, although this alone will not prevent metastasis. Chemotherapy combined with amputation improves the survival time, but most dogs still die within a year. Surgical techniques designed to save the leg (limb-sparing procedures) do not improve the prognosis.
Some current studies indicate osteoclast inhibitors such as alendronate and pamidronate may have beneficial effects on the quality of life by reducing osteolysis, thus reducing the degree of pain, as well as the risk of pathological fractures.
Rehabilitation has been proven to increase daily functional status. It is unclear if the use of anabolic steroids effects recovery.
The goals of treatment are to decrease pain, reduce the loss of hip motion, and prevent or minimize permanent femoral head deformity so that the risk of developing a severe degenerative arthritis as adult can be reduced. Assessment by a pediatric orthopaedic surgeon is recommended to evaluate risks and treatment options. Younger children have a better prognosis than older children.
Treatment has historically centered on removing mechanical pressure from the joint until the disease has run its course. Options include traction (to separate the femur from the pelvis and reduce wear), braces (often for several months, with an average of 18 months) to restore range of motion, physiotherapy, and surgical intervention when necessary because of permanent joint damage. To maintain activities of daily living, custom orthotics may be used. Overnight traction may be used in lieu of walking devices or in combination. These devices internally rotate the femoral head and abduct the leg(s) at 45°. Orthoses can start as proximal as the lumbar spine, and extend the length of the limbs to the floor. Most functional bracing is achieved using a waist belt and thigh cuffs derived from the Scottish-Rite orthosis. These devices are typically prescribed by a physician and implemented by an orthotist. Clinical results of the Scottish Rite orthosis have not been good according to some studies, and its use has gone out of favor. Many children, especially those with the onset of the disease before age 6, need no intervention at all and are simply asked to refrain from contact sports or games which impact the hip. For older children (onset of Perthes after age 6), the best treatment option remains unclear. Current treatment options for older children over age 8 include prolonged periods without weight bearing, osteotomy (femoral, pelvic, or shelf), and the hip distraction method using an external fixator which relieves the hip from carrying the body's weight. This allows room for the top of the femur to regrow. The Perthes Association has a "library" of equipment which can be borrowed to assist with keeping life as normal as possible, newsletters, a helpline, and events for the families to help children and parents to feel less isolated.
While running and high-impact sports are not recommended during treatment for Perthes disease, children can remain active through a variety of other activities that limit mechanical stress on the hip joint. Swimming is highly recommended, as it allows exercise of the hip muscles with full range of motion while reducing the stress to a minimum. Cycling is another good option as it also keeps stress to a minimum. Physiotherapy generally involves a series of daily exercises, with weekly meetings with a physiotherapist to monitor progress. These exercises focus on improving and maintaining a full range of motion of the femur within the hip socket. Performing these exercises during the healing process is essential to ensure that the femur and hip socket have a perfectly smooth interface. This will minimize the long-term effects of the disease. Use of bisphosphonate such as zoledronate or ibandronate is currently being investigated, but definite recommendations are not yet available.
Perthes disease is self-limiting, but if the head of femur is left deformed, long-term problems can occur. Treatment is aimed at minimizing damage while the disease runs its course, not at 'curing' the disease. It is recommended not to use steroids or alcohol as these reduce oxygen in the blood which is needed in the joint. As sufferers age, problems in the knee and back can arise secondary to abnormal posture and stride adopted to protect the affected joint. The condition is also linked to arthritis of the hip, though this appears not to be an inevitable consequence. Hip replacements are relatively common as the already damaged hip suffers routine wear; this varies by individual, but generally is required any time after age 50.
Treatment generally includes the following:
- Sometimes pharmacologic therapy for initial disease treatment
- Physical therapy
- Occupational therapy
- Use of appropriate assistive devices such as orthoses
- Surgical treatment