Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Although feline asthma is incurable, ongoing treatments allow many domestic cats to live normal lives. Feline asthma is commonly managed through use of bronchodilators for mild cases, or glucocorticosteroids with bronchodilators for moderate to severe cases.
Previously, standard veterinary practice recommended injected and oral medications for control of the disease. These drugs may have systemic side effects including diabetes and pancreatitis. In 2000, Dr. Philip Padrid pioneered inhaled medications using a pediatric chamber and mask using Flovent(r) (fluticasone) and salbutamol. Inhaled treatments reduce or eliminate systemic effects. In 2003 a chamber called the AeroKat Feline Aerosol Chamber was designed specifically for cats, significantly improving efficiency and reducing cost for the caregiver. Medicine can also be administered using a human baby spacer device. Inhaled steroid usually takes 10-14 days to reach an effective dose.
While there is no cure for asthma, symptoms can typically be improved. A specific, customized plan for proactively monitoring and managing symptoms should be created. This plan should include the reduction of exposure to allergens, testing to assess the severity of symptoms, and the usage of medications. The treatment plan should be written down and advise adjustments to treatment according to changes in symptoms.
The most effective treatment for asthma is identifying triggers, such as cigarette smoke, pets, or aspirin, and eliminating exposure to them. If trigger avoidance is insufficient, the use of medication is recommended. Pharmaceutical drugs are selected based on, among other things, the severity of illness and the frequency of symptoms. Specific medications for asthma are broadly classified into fast-acting and long-acting categories.
Bronchodilators are recommended for short-term relief of symptoms. In those with occasional attacks, no other medication is needed. If mild persistent disease is present (more than two attacks a week), low-dose inhaled corticosteroids or alternatively, an leukotriene antagonist or a mast cell stabilizer by mouth is recommended. For those who have daily attacks, a higher dose of inhaled corticosteroids is used. In a moderate or severe exacerbation, corticosteroids by mouth are added to these treatments.
Long-term use of inhaled corticosteroids at conventional doses carries a minor risk of adverse effects. Risks include thrush, the development of cataracts, and a slightly slowed rate of growth. Higher doses of inhaled steroids may result in lower bone mineral density.
Short-acting beta-agonists like salbutamol or terbutaline or long-acting beta-agonists like salmeterol and formoterol dilate airways which relieve the symptoms thus reducing the severity of the reaction. Some patients also use it just before work to avoid a drop in the FEV.
Anti-inflammatory agents like corticosteroids, LKTRA or mast cell stabilizers can also be used depending on the severity of the case.
Underlying disease must be controlled to prevent exacerbation and worsening of ABPA, and in most patients this consists of managing their asthma or CF. Any other co-morbidities, such as sinusitis or rhinitis, should also be addressed.
Hypersensitivity mechanisms, as described above, contribute to progression of the disease over time and, when left untreated, result in extensive fibrosis of lung tissue. In order to reduce this, corticosteroid therapy is the mainstay of treatment (for example with prednisone); however, studies involving corticosteroids in ABPA are limited by small cohorts and are often not double-blinded. Despite this, there is evidence that acute-onset ABPA is improved by corticosteroid treatment as it reduces episodes of consolidation. There are challenges involved in long-term therapy with corticosteroids—which can induce severe immune dysfunction when used chronically, as well as metabolic disorders—and approaches have been developed to manage ABPA alongside potential adverse effects from corticosteroids.
The most commonly described technique, known as sparing, involves using an antifungal agent to clear spores from airways adjacent to corticosteroid therapy. The antifungal aspect aims to reduce fungal causes of bronchial inflammation, whilst also minimising the dose of corticosteroid required to reduce the immune system’s input to disease progression. The strongest evidence (double-blinded, randomized, placebo-controlled trials) is for itraconazole twice daily for four months, which resulted in significant clinical improvement compared to placebo, and was mirrored in CF patients. Using itraconazole appears to outweigh the risk from long-term and high-dose prednisone. Newer triazole drugs—such as posaconazole or voriconazole—have not yet been studied in-depth through clinical trials in this context.
Whilst the benefits of using corticosteroids in the short term are notable, and improve quality of life scores, there are cases of ABPA converting to invasive aspergillosis whilst undergoing corticosteroid treatment. Furthermore, in concurrent use with itraconazole, there is potential for drug interaction and the induction of Cushing syndrome in rare instances. Metabolic disorders, such as diabetes mellitus and osteoporosis, can also be induced.
In order to mitigate these risks, corticosteroid doses are decreased biweekly assuming no further progression of disease after each reduction. When no exacerbations from the disease are seen within three months after discontinuing corticosteroids, the patient is considered to be in complete remission. The exception to this rule is patients who are diagnosed with advanced ABPA; in this case removing corticosteroids almost always results in exacerbation and these patients are continued on low-dose corticosteroids (preferably on an alternate-day schedule).
Serum IgE can be used to guide treatment, and levels are checked every 6–8 week after steroid treatment commences, followed by every 8 weeks for one year. This allows for determination of baseline IgE levels, though it’s important to note that most patients do not entirely reduce IgE levels to baseline. Chest X-ray or CT scans are performed after 1–2 months of treatment to ensure infiltrates are resolving.
Interventions include intravenous (IV) medications (e.g. magnesium sulfate), aerosolized medications to dilate the airways (bronchodilation) (e.g., albuterol or ipratropium bromide/salbutamol), and positive-pressure therapy, including mechanical ventilation. Multiple therapies may be used simultaneously to rapidly reverse the effects of status asthmaticus and reduce permanent damage of the airways. Intravenous corticosteroids and methylxanthines are often given. If the person with a severe asthma exacerbation is on a mechanical ventilator, certain sedating medications such as ketamine or propofol, have bronchodilating properties. According to a new randomized control trial ketamine and aminophylline are also effective in children with acute asthma who responds poorly to standard therapy.
Recovery is directly dependent on the duration and level of exposure to the causative agent. Depending on the severity of the case, the condition of the patient can improve dramatically during the first year after removal from exposure.
Three basic types of procedures are used for treating the affected workers: reducing a worker's exposure, removing a worker from the environment with the asthma-causing agent, and treatment with asthma medications. Completely stopping exposure is more effective treatment than reducing exposure. By reducing exposure, the probability of suffering another reaction is lowered. Methods of reducing exposure include transferring an affected worker to a position without the relevant asthmagen, use of respiratory protection, and engineering controls. In 1984 innovator David Cornell discovered and invented effective control equipment in the UK for the removal of many harmful workplace fumes. 'BOFA' extraction products are now found in over 100 countries worldwide.
People affected by occupational asthma that occurred after a latency period, whether a few months or years, should be immediately removed from exposure to the causative agent. However, this can entail severe socio-economic consequences for the worker as well as the employer due to loss of job, unemployment, compensation issues, quasi-permanent medical expenditures, and hiring and re-training of new personnel. This can be mitigated by transferring the worker within a company.
The preferred treatment for many patients is desensitization to aspirin, undertaken at a clinic or hospital specializing in such treatment. In the United States, the Scripps Clinic in San Diego, CA, the Massachusetts General Hospital in Boston, MA, the Brigham and Women's Hospital in Boston, MA, National Jewish Hospital in Denver and Stanford University Adult ENT Clinic have allergists who routinely perform aspirin desensitization procedures for patients with aspirin-induced asthma. Patients who are desensitized then take a maintenance dose of aspirin daily and while on daily aspirin they often have reduced need for supporting medications, fewer asthma and sinusitis symptoms than previously, and many have an improved sense of smell. Desensitization to aspirin reduces the chance of nasal polyp recurrence, and can slow the regrowth of nasal polyps. Even patients desensitized to aspirin may continue to need other medications including nasal steroids, inhaled steroids, and leukotriene antagonists.
Leukotriene antagonists and inhibitors (montelukast, zafirlukast, and zileuton) are often helpful in treating the symptoms of aspirin-induced asthma. Some patients require oral steroids to alleviate asthma and congestion, and most patients will have recurring or chronic sinusitis due to the nasal inflammation.
Feline asthma and other respiratory diseases may be prevented by cat owners by eliminating as many allergens as possible. Allergens that can be found in a cat’s habitual environment include: pollen, molds, dust from cat litter, perfumes, room fresheners, carpet deodorizers, hairspray, aerosol cleaners, cigarette smoke, and some foods. Avoid using cat litters that create lots of dust, scented cat litters or litter additives. Of course eliminating all of these can be very difficult and unnecessary, especially since a cat is only affected by one or two. It can be very challenging to find the allergen that is creating asthmatic symptoms in a particular cat and requires a lot of work on both the owner’s and the veterinarian's part. But just like any disease, the severity of an asthma attack can be propelled by more than just the allergens, common factors include: obesity, stress, parasites and pre-existing heart conditions. Dry air encourages asthma attacks so keep a good humidifier going especially during winter months.
Often surgery is required to remove nasal polyps, although they typically recur, particularly if aspirin desensitization is not undertaken. 90% of patients have been shown to have recurrence of nasal polyps within 5 years after surgery, with 47% requiring revision surgery in the same time period.
The best treatment is avoidance of conditions predisposing to attacks, when possible. In athletes who wish to continue their sport or do so in adverse conditions, preventive measures include altered training techniques and medications.
Some take advantage of the refractory period by precipitating an attack by "warming up," and then timing competition such that it occurs during the refractory period. Step-wise training works in a similar fashion. Warm up occurs in stages of increasing intensity, using the refractory period generated by each stage to reach a full workload.
The neurotransmitter acetylcholine is known to decrease sympathetic response by slowing the heart rate and constricting the smooth muscle tissue. Ongoing research and successful clinical trials have shown that agents such as diphenhydramine, atropine and Ipratropium bromide (all of which act as receptor antagonists of muscarinic acetylcholine receptors) are effective for treating asthma and COPD-related symptoms .
The treatment of EIB has been extensively studied in asthmatic subjects over the last 30 years, but not so in EIB. Thus, it is not known whether athletes with EIB or ‘sports asthma’ respond similarly to subjects with classical allergic or nonallergic asthma. However, there is no evidence supporting different treatment for EIB in asthmatic athletes and nonathletes.
The most common medication used is a beta agonist taken about 20 minutes before exercise. Some physicians prescribe inhaled anti-inflammatory mists such as corticosteroids or leukotriene antagonists, and mast cell stabilizers have also proven effective. A randomized crossover study compared oral montelukast with inhaled salmeterol, both given two hours before exercise. Both drugs had similar benefit but montelukast lasted 24 hours.
Three randomized double-blind cross-over trials have examined the effect of vitamin C on EIB. Pooling the results of the three vitamin C trials indicates an average 48% reduction in the FEV1 decline caused by exericise (Figure). The systematic review concluded that "given the safety and low cost of vitamin C, and the positive findings for vitamin C administration in the three EIB studies, it seems reasonable for physically active people to test vitamin C when they have respiratory symptoms such as cough associated with exercise." It should be acknowledged that the total number of subjects involved in all three trials was only 40.
Figure: This forest plot shows the effect of vitamin C (0.5–2 g/day) on post-exercise decline in FEV1 in three studies with asthmatic participants. Constructed from data in Fig. 4 of Hemilä (2013).
The three horizontal lines indicate the three studies, and the diamond shape at the bottom indicates the pooled effect of vitamin C: decrease in the post-exercise decline in FEV1 by 48% (95%CI: 33 to 64%).
In May 2013, the American Thoracic Society issued the first treatment guidelines for EIB.
Beta2-adrenergic agonists are recommended for bronchospasm.
- Short acting (SABA)
- Terbutaline
- Salbutamol
- Levosalbutamol
- Long acting (LABA)
- Formoterol
- Salmeterol
- Others
- Dopamine
- Norepinephrine
- Epinephrine
Avoidance of ethanol is the safest, surest, and cheapest treatment. Indeed, surveys find a positive correlation between high incidences of glu487lys ALDH2 allele-related alcohol-induced respiratory reactions as well as other causes of these reactions and low levels of alcohol consumption, alcoholism, and alcohol-related diseases. Evidently, people suffering these reaction self-impose avoidance behavior. There is a proviso here: ethanol, at surprisingly high concentrations, is used as a solvent to dissolve many types of medicines and other ingredients. This pertains particularly to liquid cold medicines and mouthwashes. Ethanol avoidance includes avoiding the ingestion of and, depending on an individual's history, mouth washing with, such agents.
Type H1 antagonists in the histamine antagonist family of drugs were tested in Japanese volunteers with alcohol-induced asthma (who presumably have glu487lys ALDH2 allele-associated asthma) and found to be completely effective in blocking bronchoconstriction responses to alcoholic beverages; these blockers, it is suggested, may be taken 1–2 hours before consumption of alcohol beverages as a preventative of alcohol-induced respiratory reactions. In the absence of specific studies on the prevention of classical alcohol induced rhinitis and asthma due to allergens in alcoholic beverages, see asthma section on Prevention and rhinitis section on Prevention of allergen-induced reactions.
In the absence of specific studies on the treatment of acute alcohol-induced bronchoconstriction and rhinitis, treatment guidelines should probably follow those of their comparable allergen-induced classical allergic reactions (see asthma section on Treatment and rhinitis section on Treatment) but possibly favoring the testing of H1 antagonist anti-histamines as part of the initial protocol.
In addition to any issues of treatment compliance, and maximised corticosteroids (inhaled or oral) and beta agonist, brittle asthma treatment also involves for type 1 additional subcutaneous injections of beta2 agonist and inhalation of long acting beta-adrenoceptor agonist, whilst type 2 needs allergen avoidance and self-management approaches. Since catastrophic attacks are unpredictable in type 2, patients may display identification of the issue, such as a MedicAlert bracelet, and carry an epinephrine autoinjector.
Avoiding allergens will help prevent symptoms. Allergies that a child has to the family pet can be controlled by removing the animal and finding it a new home. Exterminating cockroaches, mice and rats and a thorough cleaning can reduce symptoms of an allergy in children. Dust mites are attracted to moisture. They consume human skin that has come off and lodged in, furniture, rugs, mattresses, box springs, and pillows. The child's bedding can be covered with allergen-proof covers. Laundering of the child's clothing, bed linens and blankets will also reduce exposure.
Exposure to allergens outside the home can be controlled with the use of air conditioners. Washing the hair, taking a bath or shower before bedtime can be done to remove allergens that have been picked up from outside the home. If grass or grass pollen is an allergen it is sometimes beneficial to remain indoors while grass is being cut or mowed. Children with allergies to grass can avoid playing in the grass to prevent allergic symptoms. Staying out of piled leaves in the fall can help. Pets returning into the home after being outdoors may track in allergens.
Allergen immunotherapy is useful for environmental allergies, allergies to insect bites, and asthma. Its benefit for food allergies is unclear and thus not recommended. Immunotherapy involves exposing people to larger and larger amounts of allergen in an effort to change the immune system's response.
Meta-analyses have found that injections of allergens under the skin is effective in the treatment in allergic rhinitis in children and in asthma. The benefits may last for years after treatment is stopped. It is generally safe and effective for allergic rhinitis and conjunctivitis, allergic forms of asthma, and stinging insects.
The evidence also supports the use of sublingual immunotherapy for rhinitis and asthma but it is less strong. For seasonal allergies the benefit is small. In this form the allergen is given under the tongue and people often prefer it to injections. Immunotherapy is not recommended as a stand-alone treatment for asthma.
An experimental treatment, enzyme potentiated desensitization (EPD), has been tried for decades but is not generally accepted as effective. EPD uses dilutions of allergen and an enzyme, beta-glucuronidase, to which T-regulatory lymphocytes are supposed to respond by favoring desensitization, or down-regulation, rather than sensitization. EPD has also been tried for the treatment of autoimmune diseases but evidence does not show effectiveness.
A review found no effectiveness of homeopathic treatments and no difference compared with placebo. The authors concluded that, based on rigorous clinical trials of all types of homeopathy for childhood and adolescence ailments, there is no convincing evidence that supports the use of homeopathic treatments.
According to the NCCIH, the evidence is relatively strong that saline nasal irrigation and butterbur are effective, when compared to other alternative medicine treatments, for which the scientific evidence is weak, negative, or nonexistent, such as honey, acupuncture, omega 3's, probiotics, astragalus, capsaicin, grape seed extract, Pycnogenol, quercetin, spirulina, stinging nettle, tinospora or guduchi.
Completely eliminating salicylate from one's diet and environment is virtually impossible and is not a recommended course of action by many immunologists. The range of foods that have no salicylate content is very limited, and consequently salicylate-free diets are very restricted.
Desensitization involves daily administration of progressive doses of salicylate. This process is usually performed as an inpatient, with a crash-cart at the bedside over a six-day period, beginning with 25 mg of I.V. lysine-aspirin and progressing to 500 mg if tolerated.
Montelukast is one form of treatment used in aspirin-intolerant asthma.
Treatment strategies may include medication, dietary modification to exclude food allergens, and mechanical dilatation of the esophagus.
The current recommendation for first line treatment is PPI in lieu of diet as more than half of people with EOE respond to this, and it is a low risk, low cost treatment. The next step treatment is topical corticosteroids (topical viscous budesonide or fluticasone).
Dietary treatment can be effective, as there does appear to be a role of allergy in the development of EOE. Allergy testing is not particularly effective in predicting which foods are driving the disease process. Various approaches have been tried, where either six food groups (cow´s milk, wheat, egg, soy, nuts and fish/seafood), four groups (animal milk, gluten-containing cereals, egg, legumes) or two groups (animal milk and gluten-containing cereals) are excluded for a period of time, usually six weeks. Endoscopy is required to measure the response to the dietary measure. A "top down" (starting with six foods, then reintroducing) approach may be very restrictive. Four- or even two-group exclusion diets may be less difficult to follow and reduce the need for many endoscopies if the response to the limited restriction is good.
Endoscopic dilatation is sometimes required if there is significant narrowing of the esophagus. This is effective in 84% of people who require this procedure.
Reactive airways dysfunction syndrome (RADS) is a term proposed by Stuart M. Brooks and colleagues in 1985
It can also manifest in adults with exposure to high levels of chlorine, ammonia, acetic acid or sulphur dioxide, creating symptoms like asthma. These symptoms can vary from mild to fatal, and can even create long-term airway damage depending on the amount of exposure and the concentration of chlorine. Some experts classify RADS as occupational asthma. Those with exposure to highly irritating substances should receive treatment to mitigate harmful effects.
There have been numerous accounts of patients with "trichophyton" fungal infections and associated asthma, which further substantiates the likelihood of respiratory disease transmission to the healthcare provider being exposed to the microbe-laden nail dust In 1975, a dermatophyte fungal infection was described in a patient with severe tinea. The resulting treatment for mycosis improved the patient’s asthmatic condition. The antifungal treatment of many other "trichophyton" foot infections has alleviated symptoms of hypersensitivity, asthma, and rhinitis.
Chronic exposure to human nail dust is a serious occupational hazard that can be minimized by not producing such dust. Best practice is to avoid electrical debridement or burring of mycotic nails unless the treatment is necessary. When the procedure is necessary, it is possible to reduce exposure by using nail dust extractors, local exhaust, good housekeeping techniques, personal protective equipment such as gloves, glasses or goggles, face shields, and an appropriately fitted disposable respirators to protect against the hazards of nail dust and flying debris.
Acute severe asthma is an acute exacerbation of asthma that does not respond to standard treatments of bronchodilators (inhalers) and corticosteroids. Symptoms include chest tightness, rapidly progressive dyspnea (shortness of breath), dry cough, use of accessory respiratory muscles, fast and/or labored breathing, and extreme wheezing. It is a life-threatening episode of airway obstruction and is considered a medical emergency. Complications include cardiac and/or respiratory arrest.
It is characterized histologically by smooth muscle hypertrophy and basement membrane thickening.