Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The primary treatment method for fatty-acid metabolism disorders is dietary modification. It is essential that the blood-glucose levels remain at adequate levels to prevent the body from moving fat to the liver for energy. This involves snacking on low-fat, high-carbohydrate nutrients every 2–6 hours. However, some adults and children can sleep for 8–10 hours through the night without snacking.
Carnitor - an L-carnitine supplement that has shown to improve the body's metabolism in individuals with low L-carnitine levels. It is only useful for Specific fatty-acid metabolism disease.
In terms of treatment for short-chain acyl-CoA dehydrogenase deficiency, some individuals may not need treatment, while others might follow administration of:
- Riboflavin
- Dextrose
- Anticonvulsants
In the middle of the 20th century the principal treatment for some of the amino acid disorders was restriction of dietary protein and all other care was simply management of complications. In the past twenty years, enzyme replacement, gene therapy, and organ transplantation have become available and beneficial for many previously untreatable disorders. Some of the more common or promising therapies are listed:
Patients with propionic acidemia should be started as early as possible on a low protein diet. In addition to a protein mixture that is devoid of methionine, threonine, valine, and isoleucine, the patient should also receive -carnitine treatment and should be given antibiotics 10 days per month in order to remove the intestinal propiogenic flora. The patient should have diet protocols prepared for him with a “well day diet” with low protein content, a “half emergency diet” containing half of the protein requirements, and an “emergency diet” with no protein content. These patients are under the risk of severe hyperammonemia during infections that can lead to comatose states.
Liver transplant is gaining a role in the management of these patients, with small series showing improved quality of life.
As with most other fatty acid oxidation disorders, individuals with MCADD need to avoid fasting for prolonged periods of time. During illnesses, they require careful management to stave off metabolic decompensation, which can result in death. Supplementation of simple carbohydrates or glucose during illness is key to prevent catabolism. The duration of fasting for individuals with MCADD varies with age, infants typically require frequent feedings or a slow release source of carbohydrates, such as uncooked cornstarch. Illnesses and other stresses can significantly reduce the fasting tolerance of affected individuals.
Individuals with MCADD should have an "emergency letter" that allows medical staff who are unfamiliar with the patient and the condition to administer correct treatment properly in the event of acute decompensation. This letter should outline the steps needed to intervene in a crisis and have contact information for specialists familiar with the individual's care.
Misdiagnosis issues
- The MCADD disorder is commonly mistaken for Reye Syndrome by pediatricians. Reye Syndrome is a severe disorder that may develop in children while they appear to be recovering from viral infections such as chicken pox or flu.
- Most cases of Reye Syndrome are associated with the use of Aspirin during these viral infections.
Management for mitochondrial trifunctional protein deficiency entails the following:
- Avoiding factors that might precipitate condition
- Glucose
- Low fat/high carbohydrate nutrition
Standard of care for treatment of CPT II deficiency commonly involves limitations on prolonged strenuous activity and the following dietary stipulations:
- The medium-chain fatty acid triheptanoin appears to be an effective therapy for adult-onset CPT II deficiency.
- Restriction of lipid intake
- Avoidance of fasting situations
- Dietary modifications including replacement of long-chain with medium-chain triglycerides supplemented with L-carnitine
It has been suggested that a possible method of treatment for histidinemia is through the adoption of a diet that is low in histidine intake. However, the requirement for such dietary restrictions is typically unnecessary for 99% of all cases of histidinemia.
Treatment consists of dietary protein restriction, particularly leucine. During acute episodes, glycine is sometimes given, which conjugates with isovalerate forming isovalerylglycine, or carnitine which has a similar effect.
Elevated 3-hydroxyisovaleric acid is a clinical biomarker of biotin deficiency. Without biotin, leucine and isoleucine cannot be metabolized normally and results in elevated synthesis of isovaleric acid and consequently 3-hydroxyisovaleric acid, isovalerylglycine, and other isovaleric acid metabolites as well. Elevated serum 3-hydroxyisovaleric acid concentrations can be caused by supplementation with 3-hydroxyisovaleric acid, genetic conditions, or dietary deficiency of biotin. Some patients with isovaleric acidemia may benefit from supplemental biotin. Biotin deficiency on its own can have severe physiological and cognitive consequences that closely resemble symptoms of organic acidemias.
A diet with carefully controlled levels of the amino acids leucine, isoleucine, and valine must be maintained at all times in order to prevent neurological damage. Since these three amino acids occur in all natural protein, and most natural foods contain some protein, any food intake must be closely monitored, and day-to-day protein intake calculated on a cumulative basis, to ensure individual tolerance levels are not exceeded at any time. As the MSUD diet is so protein-restricted, and adequate protein is a requirement for all humans, tailored metabolic formula containing all the other essential amino acids, as well as any vitamins, minerals, omega-3 fatty acids and trace elements (which may be lacking due to the limited range of permissible foods), are an essential aspect of MSUD management. These complement the MSUD patient's natural food intake to meet normal nutritional requirements without causing harm. If adequate calories cannot be obtained from natural food without exceeding protein tolerance, specialised low protein products such as starch-based baking mixtures, imitation rice and pasta may be prescribed, often alongside a protein-free carbohydrate powder added to food and/or drink, and increased at times of metabolic stress. Some patients with MSUD may also improve with administration of high doses of thiamine, a cofactor of the enzyme that causes the condition.
Usually MSUD patients are monitored by a dietitian. Liver transplantation is another treatment option that can completely and permanently normalise metabolic function, enabling discontinuation of nutritional supplements and strict monitoring of biochemistry and caloric intake, relaxation of MSUD-related lifestyle precautions, and an unrestricted diet. This procedure is most successful when performed at a young age, and weaning from immunosuppressants may even be possible in the long run. However, the surgery is a major undertaking requiring extensive hospitalisation and rigorous adherence to a tapering regime of medications. Following transplant, the risk of periodic rejection will always exist, as will the need for some degree of lifelong monitoring in this respect. Despite normalising clinical presentation, liver transplantation is not considered a cure for MSUD. The patient will still carry two copies of the mutated BKAD gene in each of their own cells, which will consequently still be unable to produce the missing enzyme. They will also still pass one mutated copy of the gene on to each of their biological children. As a major surgery the transplant procedure itself also carries standard risks, although the odds of its success are greatly elevated when the only indication for it is an inborn error of metabolism. In absence of a liver transplant, the MSUD diet must be adhered to strictly and permanently. However, in both treatment scenarios, with proper management, those afflicted are able to live healthy, normal lives without suffering the severe neurological damage associated with the disease.
Other therapeutic interventions include:
- ethosuximide and other anticonvulsant drugs
- GHB receptor antagonist NCS-382
- GABA receptor modulators
- uridine
- acamprosate
- dopaminergic agents
- dextromethorphan
- glutamine
- antioxidants
- Lamotrigine
The GABA(B) receptor antagonist, SGS-742, is currently being tested as a potential therapeutic in an NIH phase II clinical trial (NCT02019667).
Some children with LAL-D have had an experimental therapy called hematopoietic stem cell transplantation (HSCT), also known as bone marrow transplant, to try to prevent the disease from getting worse. Data are sparse but there is a known high risk of serious complications including death, graft-versus-host disease.
LAL deficiency can be treated with sebelipase alfa is a recombinant form of LAL that was approved in 2015 in the US and EU. The disease of LAL affects < 0.2 in 10,000 people in the EU. According to an estimate by a Barclays analyst, the drug will be priced at about US $375,000 per year.
It is administered once a week via intraveneous infusion in people with rapidly progressing disease in the first six months of life. In people with less aggressive disease, it is given every other week.
Before the drug was approved, treatment of infants was mainly focused on reducing specific complications and was provided in specialized centers. Specific interventions for infants included changing from breast or normal bottle formula to a specialized low fat formula, intravenous feeding, antibiotics for infections, and steroid replacement therapy because of concerns about adrenal function.
Statins were used in people with LAL-D prior to the approval of sebelipase alfa; they helped control cholesterol but did not appear to slow liver damage; liver transplantation was necessary in most patients.
Treatment or management of organic acidemias vary; eg see methylmalonic acidemia, propionic acidemia, isovaleric acidemia, and maple syrup urine disease.
As of 1984 there were no effective treatments for all of the conditions, though treatment for some included a limited protein/high carbohydrate diet, intravenous fluids, amino acid substitution, vitamin supplementation, carnitine, induced anabolism, and in some cases, tube-feeding.
As of 1993 ketothiolase deficiency and other OAs were managed by trying to restore biochemical and physiologic homeostasis; common therapies included restricting diet to avoid the precursor amino acids and use of compounds to either dispose of toxic metabolites or increase enzyme activity.
The GABA antagonist CGP-35348 (3-amino-propyl-(diethoxymethyl) phosphinic acid) has been used in Aldh5a1-/- mice with strong results. It has shown to reduce the frequency of absence seizures, though there have been some cases in which it worsened convulsive seizures.
Initial attempts at dietary therapy in ALD involved restricting the intake of very-long chain fatty acids (VLCFA). Dietary intake is not the only source for VLCFA in the body, as they are also synthesized endogenously. This dietary restriction did not impact the levels of VLCFA in plasma and other body tissues. After the realization that endogenous synthesis was an important contribution to VLCFA in the body, efforts at dietary therapy shifted to inhibiting these synthetic pathways in the body. The parents of Lorenzo Odone, a boy with ALD, spearheaded efforts to develop a dietary treatment to slow the progression of the disease. They developed a mixture of unsaturated fatty acids (glycerol trioleate and glyceryl trierucate in a 4:1 ratio), known as Lorenzo's oil that inhibits elongation of saturated fatty acids in the body. Supplementation with Lorenzo's oil has been found to normalize the VLCFA concentrations in the body, although its effectiveness at treating the cerebral manifestations of the disease is still controversial and unproven. Trials with Lorenzo's oil have shown that it does not stop the neurological degradation in symptomatic patients, nor does it improve adrenal function.
The first suspicion of SPCD in a patient with a non-specific presentation is an extremely low plasma carnitine level. When combined with an increased concentration of carnitine in urine, the suspicion of SPCD can often be confirmed by either molecular testing or functional studies assessing the uptake of carnitine in cultured fibroblasts.
Identification of patients presymptomatically via newborn screening has allowed early intervention and treatment. Treatment for SPCD involves high dose carnitine supplementation, which must be continued for life. Individuals who are identified and treated at birth have very good outcomes, including the prevention of cardiomyopathy. Mothers who are identified after a positive newborn screen but are otherwise asymptomatic are typically offered carnitine supplementation as well. The long-term outcomes for asymptomatic adults with SPCD is not known, but the discovery of mothers with undiagnosed cardiomyopathy and SPCD has raised the possibility that identification and treatment may prevent adult onset manifestations.
While dietary therapy has been shown to be effective to normalize the very-long chain fatty acid concentrations in the plasma of individuals with ALD, allogeneic hematopoietic stem cell transplants is the only treatment that can stop demyelination that is the hallmark of the cerebral forms of the disease. In order to be effective, the transplant must be done at an early stage of the disease; if the demyelination has progressed, transplant can worsen the outcome, and increase the rate of decline. While transplants have been shown to be effective at halting the demyelination process in those presenting with the childhood cerebral form of ALD, follow-up of these patients has shown that it does not improve adrenal function.
Since phytanic acid is not produced in the human body, individuals with Refsum disease are commonly placed on a phytanic acid-restricted diet and avoid the consumption of fats from ruminant animals and certain fish, such as tuna, cod, and haddock. Grass feeding animals and their milk are also avoided. Recent research has shown that CYP4 isoform enzymes could help reduce the over-accumulation of phytanic acid "in vivo". Plasmapheresis is another medical intervention used to treat patients. This involves the filtering of blood to ensure there is no accumulation of phytanic acid.
It is important for MADD patients to maintain strength and fitness without exercising or working to exhaustion. Learning this balance may be more difficult than normally, as muscle pain and fatigue may be perceived differently from normal individuals.
Symptomatic relief from the effects of MADD may sometimes be achieved by administering ribose orally at a dose of approximately 10 grams per 100 pounds (0.2 g/kg) of body weight per day, and exercise modulation as appropriate. Taken hourly, ribose provides a direct but limited source of energy for the cells. Patients with myoadenylate deaminase deficiency do not retain ribose during heavy exercise, so supplementation may be required to rebuild levels of ATP.
Creatine monohydrate could also be helpful for AMPD patients, as it provides an alternative source of energy for anaerobic muscle tissue and was found to be helpful in the treatment of other, unrelated muscular myopathies.
Currently, there is no specific treatment to correct the LCAT deficiency so therapy is focused on symptom relief. Corneal transplant may be considered for patients presenting with severely impaired vision caused by cholesterol corneal opacities. Dialysis may be required for patients presenting with renal failure, and kidney transplant may be considered.
If a metabolic crisis is not treated, a child with VLCADD can develop: breathing problems, seizures, coma, sometimes leading to death.
Infant mortality is high for patients diagnosed with early onset; mortality can occur within less than 2 months, while children diagnosed with late-onset syndrome seem to have higher rates of survival. Patients suffering from a complete lesion of mut0 have not only the poorest outcome of those suffering from methylaonyl-CoA mutase deficiency, but also of all individuals suffering from any form of methylmalonic acidemia.