Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The primary goal of medications is to relieve symptoms such as chest pain, shortness of breath, and palpitations. Beta blockers are considered first-line agents, as they can slow down the heart rate and decrease the likelihood of ectopic beats. For people who cannot tolerate beta blockers, nondihydropyridine calcium channel blockers such as verapamil can be used, but are potentially harmful in people who also have low blood pressure or severe shortness of breath at rest. These medications also decrease the heart rate, though their use in people with severe outflow obstruction, elevated pulmonary artery wedge pressure, and low blood pressures should be done with caution. Dihydropyridine calcium channel blockers should be avoided in people with evidence of obstruction. For people whose symptoms are not relieved by the above treatments, disopyramide can be considered for further symptom relief. Diuretics can be considered for people with evidence of fluid overload, though cautiously used in those with evidence of obstruction. People who continue to have symptoms despite drug therapy can consider more invasive therapies. Intravenous phenylephrine (or another pure vasoconstricting agent) can be used in the acute setting of low blood pressure in those with obstructive hypertrophic cardiomyopathy who do not respond to fluid administration.
Treatment may include suggestion of lifestyle changes to better manage the condition. Treatment depends on the type of cardiomyopathy and condition of disease, but may include medication (conservative treatment) or iatrogenic/implanted pacemakers for slow heart rates, defibrillators for those prone to fatal heart rhythms, ventricular assist devices (VADs) for severe heart failure, or ablation for recurring dysrhythmias that cannot be eliminated by medication or mechanical cardioversion. The goal of treatment is often symptom relief, and some patients may eventually require a heart transplant.
Current treatment options for Boxer cardiomyopathy are largely restricted to the use of oral anti-arrhythmic medications. The aim of therapy is to minimize ventricular ectopy, eliminate syncopal episodes, and prevent sudden cardiac death. A number of medications have been used for this purpose, including atenolol, procainamide, sotalol, mexiletine, and amiodarone. Combinations can also be used. Sotalol is probably the most commonly used antiarrhythmic at this time. It has been demonstrated that sotalol alone, or a combination of mexiletine and atenolol, results in a reduction in the frequency and complexity of ventricular ectopy. It is likely that these medications also reduce syncopal episodes, and it is hoped this extends to a reduced risk of sudden death. Consequently, antiarrhythmic therapy is typically recommended by veterinary cardiologists for Boxer dogs with ARVC. Although relatively rare, oral antiarrhythmic medications may be proarrhythmic in some dogs; consequently, appropriate monitoring and follow-up is recommended.
The ideal therapy for Boxer cardiomyopathy would be implantation of an implantable cardioverter-defibrillator (ICD). This has been attempted in a limited number of dogs. Unfortunately, ICDs are programmed for humans and the algorithms used are not appropriate for dogs, increasing the risk of inappropriate shocks. In the future, reprogramming of ICDs may allow them to emerge as a viable option in the treatment for Boxer cardiomyopathy.
Pharmacologic management of ARVD involves arrhythmia suppression and prevention of thrombus formation.
Sotalol, a beta blocker and a class III antiarrhythmic agent, is the most effective antiarrhythmic agent in ARVD. Other antiarrhythmic agents used include amiodarone and conventional beta blockers (i.e.: metoprolol). If antiarrhythmic agents are used, their efficacy should be guided by series ambulatory holter monitoring, to show a reduction in arrhythmic events.
While angiotensin converting enzyme inhibitors (ACE Inhibitors) are well known for slowing progression in other cardiomyopathies, they have not been proven to be helpful in ARVD.
Individuals with decreased RV ejection fraction with dyskinetic portions of the right ventricle may benefit from long term anticoagulation with warfarin to prevent thrombus formation and subsequent pulmonary embolism.
A significant number of people with hypertrophic cardiomyopathy do not have any symptoms and will have normal life expectancies, although they should avoid particularly strenuous activities or competitive athletics, and should be screened for risk factors for sudden cardiac death. In people with resting or inducible outflow obstructions, situations that will cause dehydration or vasodilation (such as the use of vasodilatory or diuretic blood pressure medications) should be avoided. Septal reduction therapy is not recommended in asymptomatic people.
Treatment of restrictive cardiomyopathy should focus on management of causative conditions (for example, using corticosteroids if the cause is sarcoidosis), and slowing the progression of cardiomyopathy. Salt-restriction, diuretics, angiotensin-converting enzyme inhibitors, and anticoagulation may be indicated for managing restrictive cardiomyopathy.
Calcium channel blockers are generally contraindicated due to their negative inotropic effect, particularly in cardiomyopathy caused by amyloidosis. Digoxin, calcium channel blocking drugs and beta-adrenergic blocking agents provide little benefit, except in the subgroup of restrictive cardiomyopathy with atrial fibrillation. Vasodilators are also typically ineffective because systolic function is usually preserved in cases of RCM.
Heart failure resulting from restrictive cardiomyopathy will usually eventually have to be treated by cardiac transplantation or left ventricular assist device.
One paper
has listed the various types of management of care that have been used for various types of NCC. These are similar to management programs for other types of cardiomyopathies which include the use of ACE inhibitors, beta blockers and aspirin therapy to relieve the pressure on the heart, surgical options such as the installation of pacemaker is also an option for those thought to be at a high risk of arrhythmia problems.
In severe cases, where NCC has led to heart failure, with resulting surgical treatment including a heart valve operation, or a heart transplant.
Catheter ablation may be used to treat intractable ventricular tachycardia.
It has a 60–90% success rate. Unfortunately, due to the progressive nature of the disease, recurrence is common (60% recurrence rate), with the creation of new arrhythmogenic foci. Indications for catheter ablation include drug-refractory VT and frequent recurrence of VT after ICD placement, causing frequent discharges of the ICD.
For patients in acute heart failure, ACE inhibitors, angiotensin receptor blockers, and beta blockers, are considered mainstays of heart failure treatment. But use of beta blockers specifically for takotsubo cardiomyopathy is controversial, because they may confer no benefit.
At present, there is no effective specific treatment available for diabetic cardiomyopathy. Treatment centers around intense glycemic control through diet, oral hypoglycemics and frequently insulin and management of heart failure symptoms. There is a clear correlation between increased glycemia and risk of developing diabetic cardiomyopathy, therefore, keeping glucose concentrations as controlled as possible is paramount. Thiazolidinediones are not recommended in patients with NYHA Class III or IV heart failure secondary to fluid retention.
As with most other heart diseases, ACE inhibitors can also be administered. An analysis of major clinical trials shows that diabetic patients with heart failure benefit from such a therapy to a similar degree as non-diabetics. Similarly, beta blockers are also common in the treatment of heart failure concurrently with ACE inhibitors.
The treatment of takotsubo cardiomyopathy is generally supportive in nature, for it is considered a transient disorder. Treatment is dependent on whether patients experience heart failure or acute hypotension and shock. In many individuals, left ventricular function normalizes within two months. Aspirin and other heart drugs also appear to help in the treatment of this disease, even in extreme cases. After the patient has been diagnosed, and myocardial infarction (heart attack) ruled out, the aspirin regimen may be discontinued, and treatment becomes that of supporting the patient.
While medical treatments are important to address the acute symptoms of Takotsubo cardiomyopathy, further treatment includes lifestyle changes. It is important that the individual stay physically healthy while learning and maintaining methods to manage stress, and to cope with future difficult situations.
Although the symptoms of Takotsubo cardiomyopathy usually go away on their own and the condition completely resolves itself within a few weeks, some serious complications can happen that must be treated. These most commonly include congestive heart failure and very low blood pressure, and less commonly include blood clotting in the apex of the left ventricle, irregular heart beat, and tearing of the heart wall.
Many factors influence the time course and extent of remodeling, including the severity of the injury, secondary events (recurrent ischemia or infarction), neurohormonal activation, genetic factors and gene expression, and treatment. Medications may attenuate remodeling. Angiotensin-converting enzyme (ACE) inhibitors have been consistently shown to decrease remodeling in animal models or transmural infarction and chronic pressure overload. Clinical trials have shown that ACE inhibitor therapy after myocardial infarction leads to improved myocardial performance, improved ejection fraction, and decreased mortality compared to patients treated with placebo. Likewise, inhibition of aldosterone, either directly or indirectly, leads to improvement in remodeling. Carvedilol, a 3rd generation beta blocker, may actually reverse the remodeling process by reducing left ventricular volumes and improving systolic function. Early correction of congenital heart defects, if appropriate, may prevent remodeling, as will treatment of chronic hypertension or valvular heart disease. Often, reverse remodeling, or improvement in left ventricular function, will also be seen.
Due to non-compaction cardiomyopathy being a relatively new disease, its impact on human life expectancy is not very well understood. In a 2005 study that documented the long-term follow-up of 34 patients with NCC, 35% had died at the age of 42 +/- 40 months, with a further 12% having to undergo a heart transplant due to heart failure. However, this study was based upon symptomatic patients referred to a tertiary-care center, and so were suffering from more severe forms of NCC than might be found typically in the population. Sedaghat-Hamedani et al. also showed the clinical course of symptomatic LVNC can be severe. In this study cardiovascular events were significantly more frequent in LVNC patients compared with an age-matched group of patients with non-ischaemic dilated cardiomyopathy (DCM). As NCC is a genetic disease, immediate family members are being tested as a precaution, which is turning up more supposedly healthy people with NCC who are asymptomatic. The long-term prognosis for these people is currently unknown.
No specific drugs are used to treat pacemaker syndrome directly because treatment consists of upgrading or reprogramming the pacemaker.
Diet alone cannot treat pacemaker syndrome, but an appropriate diet to the patient, in addition to the other treatment regimens mentioned, can improve the patient's symptoms. Several cases mentioned below:
- For patients with heart failure, low-salt diet is indicated.
- For patients with autonomic insufficiency, a high-salt diet may be appropriate.
- For patients with dehydration, oral fluid rehydration is needed.
Depending on the type of cardiogenic shock, treatment involves infusion of fluids, or in shock refractory to fluids, inotropic medications. In case of an abnormal heart rhythm several anti-arrhythmic agents may be administered, e.g. adenosine.
Positive inotropic agents (such as dobutamine or milrinone), which enhance the heart's pumping capabilities, are used to improve the contractility and correct the low blood pressure. Should that not suffice an intra-aortic balloon pump (which reduces workload for the heart, and improves perfusion of the coronary arteries) or a left ventricular assist device (which augments the pump-function of the heart) can be considered. Finally, as a last resort, if the person is stable enough and otherwise qualifies, heart transplantation, or if not eligible an artificial heart, can be placed. These invasive measures are important tools- more than 50% of patients who do not die immediately due to cardiac arrest from a lethal abnormal heart rhythm and live to reach the hospital (who have usually suffered a severe acute myocardial infarction, which in itself still has a relatively high mortality rate), die within the first 24 hours. The mortality rate for those still living at time of admission who suffer complications (among others, cardiac arrest or further abnormal heart rhythms, heart failure, cardiac tamponade, a ruptured or dissecting aneurysm, or another heart attack) from cardiogenic shock is even worse around 85%, especially without drastic measures such as ventricular assist devices or transplantation.
Cardiogenic shock may be treated with intravenous dobutamine, which acts on β receptors of the heart leading to increased contractility and heart rate.
Individuals with mitral valve prolapse, particularly those without symptoms, often require no treatment. Those with mitral valve prolapse and symptoms of dysautonomia (palpitations, chest pain) may benefit from beta-blockers (e.g., propranolol). Patients with prior stroke and/or atrial fibrillation may require blood thinners, such as aspirin or warfarin. In rare instances when mitral valve prolapse is associated with severe mitral regurgitation, mitral valve repair or surgical replacement may be necessary. Mitral valve repair is generally considered preferable to replacement. Current ACC/AHA guidelines promote repair of mitral valve in patients before symptoms of heart failure develop. Symptomatic patients, those with evidence of diminished left ventricular function, or those with left ventricular dilatation need urgent attention.
Cardiomyopathy is a group of diseases that affect the heart muscle. Early on there may be few or no symptoms. Some people may have shortness of breath, feel tired, or have swelling of the legs due to heart failure. An irregular heart beat may occur as well as fainting. Those affected are at an increased risk of sudden cardiac death.
Types of cardiomyopathy include hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, arrhythmogenic right ventricular dysplasia, and takotsubo cardiomyopathy (broken heart syndrome). In hypertrophic cardiomyopathy the heart muscle enlarges and thickens. In dilated cardiomyopathy the ventricles enlarge and weaken. In restrictive cardiomyopathy the ventricle stiffens.
The cause is frequently unknown. Hypertrophic cardiomyopathy is often, and dilated cardiomyopathy in a third of cases is inherited from a person's parents. Dilated cardiomyopathy may also result from alcohol, heavy metals, coronary heart disease, cocaine use, and viral infections. Restrictive cardiomyopathy may be caused by amyloidosis, hemochromatosis, and some cancer treatments. Broken heart syndrome is caused by extreme emotional or physical stress.
Treatment depends on the type of cardiomyopathy and the degree of symptoms. Treatments may include lifestyle changes, medications, or surgery. In 2015 cardiomyopathy and myocarditis affected 2.5 million people. Hypertrophic cardiomyopathy affects about 1 in 500 people while dilated cardiomyopathy affects 1 in 2,500. They resulted in 354,000 deaths up from 294,000 in 1990. Arrhythmogenic right ventricular dysplasia is more common in young people.
Boxer cardiomyopathy (also known as "Boxer arrhythmogenic right ventricular cardiomyopathy") is a disease of the myocardium primarily affecting Boxer dogs. It is characterized by the development of ventricular tachyarrhythmias, resulting in syncope and sudden cardiac death. Myocardial failure and congestive heart failure are uncommon manifestations of the disease.
Restrictive cardiomyopathy (RCM) is a form of cardiomyopathy in which the walls of the heart are rigid (but not thickened). Thus the heart is restricted from stretching and filling with blood properly. It is the least common of the three original subtypes of cardiomyopathy: hypertrophic, dilated, and restrictive.
It should not be confused with constrictive pericarditis, a disease which presents similarly but is very different in treatment and prognosis.
In cardiology, ventricular remodeling (or cardiac remodeling) refers to changes in the size, shape, structure, and function of the heart. This can happen as a result of exercise (physiological remodeling) or after injury to the heart muscle (pathological remodeling). The injury is typically due to acute myocardial infarction (usually transmural or ST segment elevation infarction), but may be from a number of causes that result in increased pressure or volume, causing pressure overload or volume overload (forms of strain) on the heart. Chronic hypertension, congenital heart disease with intracardiac shunting, and valvular heart disease may also lead to remodeling. After the insult occurs, a series of histopathological and structural changes occur in the left ventricular myocardium that lead to progressive decline in left ventricular performance. Ultimately, ventricular remodeling may result in diminished contractile (systolic) function and reduced stroke volume.
Physiological remodeling is reversible while pathological remodeling is mostly irreversible. Remodeling of the ventricles under left/right pressure demand make mismatches inevitable. Pathologic pressure mismatches between the pulmonary and systemic circulation guide compensatory remodeling of the left and right ventricles. The term "reverse remodeling" in cardiology implies an improvement in ventricular mechanics and function following a remote injury or pathological process.
Ventricular remodeling may include ventricular hypertrophy, ventricular dilation, cardiomegaly, and other changes. It is an aspect of cardiomyopathy, of which there are many types. Concentric hypertrophy is due to pressure overload, while eccentric hypertrophy is due to volume overload.
Because several well-known and high-profile cases of athletes experiencing sudden unexpected death due to cardiac arrest, such as Reggie White and Marc-Vivien Foé, a growing movement is making an effort to have both professional and school-based athletes screened for cardiac and other related conditions, usually through a careful medical and health history, a good family history, a comprehensive physical examination including auscultation of heart and lung sounds and recording of vital signs such as heart rate and blood pressure, and increasingly, for better efforts at detection, such as an electrocardiogram.
An electrocardiogram (ECG) is a relatively straightforward procedure to administer and interpret, compared to more invasive or sophisticated tests; it can reveal or hint at many circulatory disorders and arrhythmias. Part of the cost of an ECG may be covered by some insurance companies, though routine use of ECGs or other similar procedures such as echocardiography (ECHO) are still not considered routine in these contexts. Widespread routine ECGs for all potential athletes during initial screening and then during the yearly physical assessment could well be too expensive to implement on a wide scale, especially in the face of the potentially very large demand. In some places, a shortage of funds, portable ECG machines, or qualified personnel to administer and interpret them (medical technicians, paramedics, nurses trained in cardiac monitoring, advanced practice nurses or nurse practitioners, physician assistants, and physicians in internal or family medicine or in some area of cardiopulmonary medicine) exist.
If sudden cardiac death occurs, it is usually because of pathological hypertrophic enlargement of the heart that went undetected or was incorrectly attributed to the benign "athletic" cases. Among the many alternative causes are episodes of isolated arrhythmias which degenerated into lethal VF and asystole, and various unnoticed, possibly asymptomatic cardiac congenital defects of the vessels, chambers, or valves of the heart. Other causes include carditis, endocarditis, myocarditis, and pericarditis whose symptoms were slight or ignored, or were asymptomatic.
The normal treatments for episodes due to the pathological look-alikes are the same mainstays for any other episode of cardiac arrest: Cardiopulmonary resuscitation, defibrillation to restore normal sinus rhythm, and if initial defibrillation fails, administration of intravenous epinephrine or amiodarone. The goal is avoidance of infarction, heart failure, and/or lethal arrhythmias (ventricular tachycardia, ventricular fibrillation, asystole, or pulseless electrical activity), so ultimately to restore normal sinus rhythm.
Athlete's heart is not dangerous for athletes (though if a nonathlete has symptoms of bradycardia, cardiomegaly, and cardiac hypertrophy, another illness may be present). Athlete's heart is not the cause of sudden cardiac death during or shortly after a workout, which mainly occurs due to hypertrophic cardiomyopathy, a genetic disorder.
No treatment is required for people with athletic heart syndrome; it does not pose any physical threats to the athlete, and despite some theoretical concerns that the ventricular remodeling might conceivably predispose for serious arrhythmias, no evidence has been found of any increased risk of long-term events. Athletes should see a physician and receive a clearance to be sure their symptoms are due to athlete’s heart and not another heart disease, such as cardiomyopathy. If the athlete is uncomfortable with having athlete's heart or if a differential diagnosis is difficult, deconditioning from exercise for a period of three months allows the heart to return to its regular size. However, one long-term study of elite-trained athletes found that dilation of the left ventricle was only partially reversible after a long period of deconditioning. This deconditioning is often met with resistance to the accompanying lifestyle changes. The real risk attached to athlete's heart is if athletes or nonathletes simply assume they have the condition, instead of making sure they do not have a life-threatening heart illness.
Diabetic cardiomyopathy is a disorder of the heart muscle in people with diabetes. It can lead to inability of the heart to circulate blood through the body effectively, a state known as heart failure, with accumulation of fluid in the lungs (pulmonary edema) or legs (peripheral edema). Most heart failure in people with diabetes results from coronary artery disease, and diabetic cardiomyopathy is only said to exist if there is "no" coronary artery disease to explain the heart muscle disorder.
Individuals with MVP are at higher risk of bacterial infection of the heart, called infective endocarditis. This risk is approximately three- to eightfold the risk of infective endocarditis in the general population. Until 2007, the American Heart Association recommended prescribing antibiotics before invasive procedures, including those in dental surgery. Thereafter, they concluded that "prophylaxis for dental procedures should be recommended only for patients with underlying cardiac conditions associated with the highest risk of adverse outcome from infective endocarditis."
Many organisms responsible for endocarditis are slow-growing and may not be easily identified on routine blood cultures (these fastidious organisms require special culture media to grow). These include the HACEK organisms, which are part of the normal oropharyngeal flora and are responsible for perhaps 5 to 10% of infective endocarditis affecting native valves. It is important when considering endocarditis to keep these organisms in mind.