Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Arrhythmia suppression involves the use of medications or surgical procedures that attack the underlying cause of the arrhythmias associated with LQTS. Since the cause of arrhythmias in LQTS is EADs, and they are increased in states of adrenergic stimulation, steps can be taken to blunt adrenergic stimulation in these individuals. These include administration of beta receptor blocking agents, which decreases the risk of stress-induced arrhythmias. Beta blockers are an effective treatment for LQTS caused by LQT1 and LQT2.
Genotype and QT interval duration are independent predictors of recurrence of life-threatening events during beta-blocker therapy. To be specific, the presence of QTc >500 ms and LQT2 and LQT3 genotype are associated with the highest incidence of recurrence. In these patients, primary prevention with use of implantable cardioverter-defibrillators can be considered.
- Potassium supplementation: If the potassium content in the blood rises, the action potential shortens, so increasing potassium concentration could minimize the occurrence of arrhythmias. It should work best in LQT2, since the hERG channel is especially sensitive to potassium concentration, but the use is experimental and not evidence-based.
- Mexiletine, a sodium channel blocker: In LQT3, the sodium channel does not close properly. Mexiletine closes these channels and is believed to be usable when other therapies fail. Theoretically, mexiletine could be useful for people with this form of LQTS, but the medication is currently under study for this application and its use is not currently recommended.
- Amputation of the cervical sympathetic chain (left stellectomy). This therapy is typically reserved for LQTS caused by JLNS, but may be used as an add-on therapy to beta blockers in certain cases. In most cases, modern therapy favors ICD implantation if beta blocker therapy fails.
Arrhythmia termination involves stopping a life-threatening arrhythmia once it has already occurred. One effective form of arrhythmia termination in individuals with LQTS is placement of an implantable cardioverter-defibrillator (ICD). Also, external defibrillation can be used to restore sinus rhythm. ICDs are commonly used in patients with fainting episodes despite beta blocker therapy, and in patients having experienced a cardiac arrest.
With better knowledge of the genetics underlying LQTS, more precise treatments hopefully will become available.
Currently, some individuals with short QT syndrome have had implantation of an implantable cardioverter-defibrillator (ICD) as a preventive action, although it has not been demonstrated that heart problems have occurred before deciding to implant an ICD.
A recent study has suggested the use of certain antiarrhythmic agents, particularly quinidine, may be of benefit in individuals with short QT syndrome due to their effects on prolonging the action potential and by their action on the I channels. Some trials are currently under way but do not show a longer QT statistically.
The cause of sudden death in Brugada syndrome is ventricular fibrillation (VF). The average age of death is 41. According to clinical reports, sudden death in people with Brugada syndrome most often happens during sleep. The episodes of syncope (fainting) and sudden death (aborted or not) are caused by fast polymorphic ventricular tachycardias or ventricular fibrillation. These arrhythmias appear with no warning. While there is no exact treatment modality that reliably and totally prevents ventricular fibrillation from occurring in this syndrome, treatment lies in termination of this lethal arrhythmia before it causes death. This is done via insertion of an implantable cardioverter-defibrillator (ICD), which continuously monitors the heart rhythm and will shock the wearer if ventricular fibrillation is sensed.
Studies have evaluated the role of quinidine, a Class Ia antiarrhythmic drug, for decreasing VF episodes occurring in this syndrome. Quinidine has been found to both decrease the number of VF episodes and correct spontaneous ECG changes, possibly via inhibiting I channels.
Some drugs have been reported to induce the type-1 ECG and/or (fatal) arrhythmias in Brugada syndrome patients. Patients with Brugada syndrome can prevent arrhythmias by avoiding these drugs or using them only in controlled conditions. Those with risk factors for coronary artery disease may require an angiogram before ICD implantation.
Treatment for Romano–Ward syndrome can "deal with" the imbalance between the right and left sides of the sympathetic nervous system which may play a role in the cause of this syndrome. The imbalance can be temporarily abolished with a left stellate ganglion block, which shorten the QT interval. If this is successful, surgical ganglionectomy can be performed as a permanent treatment.Ventricular dysrhythmia may be managed by beta-adrenergic blockade (propranolol)
Surgery is typically used to correct structural heart defects and syndactyly. Propanolol or beta-adrenergic blockers are often prescribed as well as insertion of a pacemaker to maintain proper heart rhythm. With the characterization of Timothy syndrome mutations indicating that they cause defects in calcium currents, it has been suggested that calcium channel blockers may be effective as a therapeutic agent.
Treatment is directed towards the withdrawal of the offending agent, infusion of magnesium sulfate, antiarrhythmic drugs, and electrical therapy, such as a temporary pacemaker, as needed.
Because of the polymorphic nature of torsades de pointes, synchronized cardioversion may not be possible, and the patient may require an unsynchronized shock (or defibrillation).
Rate control to a target heart rate of less than 110 beats per minute is recommended in most people. Lower heart rates may be recommended in those with left ventricular hypertrophy or reduced left ventricular function. Rate control is achieved with medications that work by increasing the degree of block at the level of the AV node, decreasing the number of impulses that conduct into the ventricles. This can be done with:
- Beta blockers (preferably the "cardioselective" beta blockers such as metoprolol, bisoprolol, or nebivolol)
- Non-dihydropyridine calcium channel blockers (e.g., diltiazem or verapamil)
- Cardiac glycosides (e.g., digoxin) – have less use, apart from in older people who are sedentary. They are not as effective as either beta blockers or calcium channel blockers.
In those with chronic disease either beta blockers or calcium channel blockers are recommended.
In addition to these agents, amiodarone has some AV node blocking effects (in particular when administered intravenously), and can be used in individuals when other agents are contraindicated or ineffective (particularly due to hypotension).
For those who are stable with a monomorphic waveform the medications procainamide or sotalol may be used and are better than lidocaine. Evidence does not show that amiodarone is better than procainamide.
As a low magnesium level in the blood is a common cause of VT, magnesium sulfate can be given for torsades de pointes or if a low blood magnesium level is found/suspected.
Long-term anti-arrhythmic therapy may be indicated to prevent recurrence of VT. Beta-blockers and a number of class III anti-arrhythmics are commonly used, such as the beta-blockers carvedilol, metoprolol, and bisoprolol, and the Potassium-Channel-Blockers amiodarone, dronedarone,bretylium, sotalol, ibutilide, and dofetilide. Angiotensin-converting-eynsyme (ACE) inhibitors and aldostrone antatagonists are also sometimes used in this setting.
Defibrillation is the definitive treatment of ventricular fibrillation, whereby an electrical current is applied to the ventricular mass either directly or externally through pads or paddles, with the aim of depolarising enough of the myocardium for co-ordinated contractions to occur again. The use of this is often dictated around the world by Advanced Cardiac Life Support or Advanced Life Support algorithms, which is taught to medical practitioners including doctors, nurses and paramedics and also advocates the use of drugs, predominantly epinephrine, after every second unsuccessful attempt at defibrillation, as well as cardiopulmonary resuscitation (CPR) in between defibrillation attempts. Though ALS/ACLS algorithms encourage the use of drugs, they state first and foremost that defibrillation should not be delayed for any other intervention and that adequate cardiopulmonary resuscitation be delivered with minimal interruption.
The precordial thump is a manoeuver promoted as a mechanical alternative to defibrillation. Some advanced life support algorithms advocate its use once and only in the case of witnessed and monitored V-fib arrests as the likelihood of it successfully cardioverting a patient are small and this diminishes quickly in the first minute of onset.
Patients who survive a 'V-fib arrest' and who make a good recovery from this are often considered for implantation of an implantable cardioverter-defibrillator, which can quickly deliver this same life-saving defibrillation should another episode of ventricular fibrillation occur outside a hospital environment.
The main goals of treatment are to prevent circulatory instability and stroke. Rate or rhythm control are used to achieve the former, whereas anticoagulation is used to decrease the risk of the latter. If cardiovascularly unstable due to uncontrolled tachycardia, immediate cardioversion is indicated. Regular, moderate-intensity exercise is beneficial for people with AF.
A person with pulseless VT is treated the same as ventricular fibrillation with high-energy (360J with a monophasic defibrillator, or 200J with a biphasic defibrillator) unsynchronised cardioversion (defibrillation). They will be unconscious.
The shock may be delivered to the outside of the chest using the two pads of an external defibrillator, or internally to the heart by an implantable cardioverter-defibrillator (ICD) if one has previously been inserted.
An ICD may also be set to attempt to overdrive pace the ventricle. Pacing the ventricle at a rate faster than the underlying tachycardia can sometimes be effective in terminating the rhythm. If this fails after a short trial, the ICD will usually stop pacing, charge up and deliver a defibrillation grade shock.
For patients in acute heart failure, ACE inhibitors, angiotensin receptor blockers, and beta blockers, are considered mainstays of heart failure treatment. But use of beta blockers specifically for takotsubo cardiomyopathy is controversial, because they may confer no benefit.
For people with cardiogenic shock, medical treatment is based on whether a left ventricular outflow tract (LVOT) obstruction is present. Therefore, early echocardiography is necessary to determine proper management. For those with obstructed LVOTs inotropic agents should not be used, but instead should be managed like patients with hypertrophic cardiomyopathy, (e.g. phenylephrine and fluid resuscitation). For cases in which the LVOT is not obstructed, inotropic therapy (e.g. dobutamine and dopamine) may be used, but with the consideration that takotsubo is caused by excess catecholamines.
Furthermore, mechanical support with an intra-aortic balloon pump (IABP) is well-established as supportive treatment.
JLNS patients with "KCNQ1" mutations are particularly prone to pathological lengthening of the QT interval, which predisposes them to episodes of "torsades de pointes" and sudden cardiac death. In this context, if the patient has had syncopal episodes or history of cardiac arrest, an implantable cardiac defibrillator should be used in addition to a beta blocker such as propranolol.
Knowledge that TdP may occur in patients taking certain prescription drugs has been both a major liability and reason for retirement of these medications from the marketplace. Examples of compounds linked to clinical observations of TdP include amiodarone, fluoroquinolones, methadone, lithium, chloroquine, erythromycin, amphetamine, ephedrine, pseudoephedrine, methylphenidate, and phenothiazines. It has also been shown as a side effect of certain anti-arrhythmic medications, such as sotalol, procainamide, and quinidine. The gastrokinetic drug cisapride (Propulsid) was withdrawn from the US market in 2000 after it was linked to deaths caused by long QT syndrome-induced torsades de pointes. In many cases, this effect can be directly linked to QT prolongation mediated predominantly by inhibition of the hERG channel.
In September 2011 (subsequently updated in March 2012 and February 2013), the FDA issued a warning concerning increased incidence of QT prolongation in patients prescribed doses of the antidepressant Celexa (citalopram) above 40 mg per day, considered the maximum allowable dosage, thereby increasing the risk of Torsades. However, a study, "Evaluation of the FDA Warning Against Prescribing Citalopram at Doses Exceeding 40 mg," reported no increased risk of abnormal arrhythmias, thus questioning the validity of the FDA's warning.
Short QT syndrome is a genetic disease of the electrical system of the heart. It consists of a constellation of signs and symptoms, consisting of a short QT interval on an EKG (≤ 300 ms) that does not significantly change with heart rate, tall and peaked T waves, and a structurally normal heart. Short QT syndrome appears to be inherited in an autosomal dominant pattern, and a few affected families have been identified.
Brugada syndrome (BrS) is a genetic condition that results in abnormal electrical activity within the heart, increasing the risk of sudden cardiac death. Those affected may have episodes of passing out. Typically this occurs when a person is at rest.
It is often inherited from a person's parent with about a quarter of people having a family history. Some cases may be due to a new mutation or certain medications. The abnormal heart rhythms can be triggered by a fever or increased vagal tone. Diagnosis is typically by electrocardiogram (ECG), however, the abnormalities may not be consistently present.
Treatment may be with an implantable cardioverter defibrillator (ICD). Isoproterenol may be used in those who are acutely unstable. In those without symptoms the risk of death is much lower, and how to treat this group is unclear. Testing people's family members may be recommended.
Between 1 and 30 per 10,000 people are affected. Onset of symptoms is usually in adulthood. It is more common in people of Asian descent. Males are more commonly affected than females. It is named after the Spanish cardiologists Pedro and Josep Brugada who described the condition in 1992. Their brother Ramon Brugada described the underlying genetics in 1998.
Romano–Ward syndrome is the major variant of "long QT syndrome". It is a condition that causes a disruption of the heart's normal rhythm. This disorder is a form of long QT syndrome, which is a heart condition that causes the cardiac muscle to take longer than usual to recharge between beats; if untreated, the irregular heartbeats can lead to fainting, seizures, or sudden death
Jervell and Lange-Nielsen syndrome (JLNS) is a type of long QT syndrome associated with severe, bilateral sensorineural hearing loss. Long QT syndrome causes the cardiac muscle to take longer than usual to recharge between beats. If untreated, the irregular heartbeats, called arrhythmias, can lead to fainting, seizures, or sudden death. It was first described by Anton Jervell and Fred Lange-Nielsen in 1957.
Andersen–Tawil syndrome, also called Andersen syndrome and Long QT syndrome 7, is a form of long QT syndrome. It is a rare genetic disorder, and is inherited in an autosomal dominant pattern and predisposes patients to cardiac arrhythmias. Jervell and Lange-Nielsen Syndrome is a similar disorder which is also associated with sensorineural hearing loss. It was first described by Ellen Damgaard Andersen.
In the acute phase of an attack, administration of potassium will quickly restore muscle strength and prevent complications. However, caution is advised as the total amount of potassium in the body is not decreased, and it is possible for potassium levels to overshoot ("rebound hyperkalemia"); slow infusions of potassium chloride are therefore recommended while other treatment is commenced.
The effects of excess thyroid hormone typically respond to the administration of a non-selective beta blocker, such as propranolol (as most of the symptoms are driven by increased levels of adrenaline and its effect on the β-adrenergic receptors). Subsequent attacks may be prevented by avoiding known precipitants, such as high salt or carbohydrate intake, until the thyroid disease has been adequately treated.
Treatment of the thyroid disease usually leads to resolution of the paralytic attacks. Depending on the nature of the disease, the treatment may consist of thyrostatics (drugs that reduce production of thyroid hormone), radioiodine, or occasionally thyroid surgery.
A triad of hypokalemic periodic paralysis, potentially fatal cardiac ventricular ectopy and characteristic physical features is known as Anderson-Tawil Syndrome. It affects the heart, symptoms are a disruption in the rhythm of the heart's lower chambers (ventricular arrhythmia) in addition to the symptoms of long QT syndrome. There are also physical abnormalities associated with Andersen–Tawil syndrome, these typically affect the head, face, and limbs. These features often include an unusually small lower jaw (micrognathia), low-set ears, and an abnormal curvature of the fingers called clinodactyly. Furthermore it causes symptoms which are similar to Long QT syndrome, which Andersen's is also known as. Long QT syndrome, a hereditary disorder that usually affects children or young adults, slows the signal that causes the ventricles to contract. Another electrical signal problem, atrial flutter, happens when a single electrical wave circulates rapidly in the atrium, causing a very fast but steady heartbeat. Heart block involves weak or improperly conducted electrical signals from the upper chambers that can't make it to the lower chambers, causing the heart to beat too slowly. These conditions can put you at risk for cardiac arrest. Treatment might involve medication, ablation, or an implanted device to correct the misfiring, such as a pacemaker or defibrillator. Here are some common physical abnormalities, but keep in mind these do vary (in severity) between each patient:
Some more severe issues can be caused via the potassium channelopathy. These include paralysis (mostly temporary and can last from several seconds to several minutes), inability to perform long distance/interval exercises and sudden exhaustion- although this can be a sign of cardiac arrhythmia- which should be immeditaley checked out by a GP, whether you have been diagnosed with ATS or not.
Afterdepolarizations are abnormal depolarizations of cardiac myocytes that interrupt phase 2, phase 3, or phase 4 of the cardiac action potential in the electrical conduction system of the heart. Afterdepolarizations may lead to cardiac arrhythmias.
Most asymptomatic individuals with Gitelman syndrome can be monitored without medical treatment. Potassium and magnesium supplementation to normalize low blood levels of potassium and magnesium is the mainstay of treatment. Large doses of potassium and magnesium are often necessary to adequately replace the electrolytes lost in the urine. Diarrhea is a common side effect of oral magnesium which can make oral replacement difficult but dividing the dose to 3-4 times a day is better tolerated. Severe deficits of potassium and magnesium require intravenous replacement. If low blood potassium levels are not sufficiently replaced with oral replacement, aldosterone antagonists (such as spironolactone or eplerenone) or epithelial sodium channel blockers such as amiloride can be used to decrease urinary wasting of potassium.