Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Though no topical treatment has been proven to be effective in the treatment of Central Serous Retinopathy. Some doctors have attempted to use nonsteroidal topical medications to reduce the subretinal fluid associated with CSR. The nonsteroidal topical medications that are sometimes used to treat CSR are, Ketorolac, Diclofenac, or Bromfenac.
People who have irregular sleep patterns, type A personalities, sleep apnea, or systemic hypertension are more susceptible Central Serous Retinopathy, as stated in Medscape “The pathogenesis here is thought to be elevated circulating cortisol and epinephrine, which affect the autoregulation of the choroidal circulation,” With management of these lifestyle patterns, it has been shown that the fluid associated with Central Serous Retinopathy can spontaneously resolve with the management of the cortisol and epinephrine levels. Melatonin has been shown to help regulate sleep in people who have irregular sleep patterns (such as 3rd shift workers, or overnight employees), in turn regulating cortisol and epinephrine levels to manage CSR.
Optic pits themselves do not need to be treated. However, patients should follow up with their eye care professional annually or even sooner if the patient notices any visual loss whatsoever. Treatment of PVD or serous retinal detachment will be necessary if either develops in a patient with an optic pit.
A 2014 Cochrane Systematic Review studied the effectiveness of two anti-VEGF treatments, ranibizumab and pegaptanib, on patients suffering from macular edema caused by CRVO. Participants on both treatment groups showed a reduction in macular edema symptoms over six months.
Another Cochrane Review examined the effectiveness and safety of two intravitreal steroid treatments, triamcinolone acetonide and dexamethasone, for patients with from CRVO-ME. The results from one trial showed that patients treated with triamcinolone acetonide were significantly more likely to show improvements in visual acuity than those in the control group, though outcome data was missing for a large proportion of the control group. The second trial showed that patients treated with dexamethasone implants did not show improvements in visual acuity, compared to patients in the control group.
Evidence also suggests that intravitreal injections and implantation of steroids inside the eye can result in improved visual outcomes for patients with chronic or refractory diabetic macular edema.
In 2005, steroids were investigated for the treatment of macular edema due to retinal blood vessel blockage such as CRVO and BRVO.
To date, there is no known effective treatment for the non-proliferative form of macular telangiectasia type 2.
Treatment options are limited. No treatment has to date been shown to prevent progression. The variable course of progression of the disease makes it difficult to assess the efficacy of treatments. Retinal laser photocoagulation is not helpful. In fact, laser therapy may actually enhance vessel ectasia and promote intraretinal fibrosis in these individuals. It is hoped that a better understanding of the pathogenesis of the disease may lead to better treatments.
The use of vascular endothelial growth factor (VEGF) inhibitors, which have proven so successful in treating age-related macular degeneration, have not proven to be effective in non-proliferative MacTel type 2. Ranibizumab reduces the vascular leak seen on angiography, although microperimetry suggests that neural atrophy may still proceed in treated eyes.In proliferative stages (neovascularisation), treatment with Anti-VEGF can be helpful.
CNTF is believed to have neuroprotective properties and could thus be able to slow down the progression of MacTel type 2. It has been shown to be safe to use in MacTel patients in a phase 1 safety trial.
Retinoschisis involving the central part of the retina secondary to an optic disc pit was erroneously considered to be a serous retinal detachment until correctly described by Lincoff as retinoschisis. Significant visual loss may occur and following a period of observation for spontaneous resolution, treatment with temporal peripapillary laser photocoagulation followed by vitrectomy and gas injection followed by face-down positioning is very effective in treating this condition.
The most crucial aspect of managing patients with macular telangiectasia is recognition of the clinical signs. This condition is relatively uncommon: hence, many practitioners may not be familiar with or experienced in diagnosing the disorder. MacTel must be part of the differential in any case of idiopathic paramacular hemorrhage, vasculopathy, macular edema or focal pigment hypertrophy, especially in those patients without a history of retinopathy or contributory systemic disease.
Treatment options for macular telangiectasia type 1 include laser photocoagulation, intra-vitreal injections of steroids, or anti-vascular endothelial growth factor (anti-VEGF) agents. Photocoagulation was recommended by Gass and remains to date the mainstay of treatment. It seems to be successful in causing resolution of exudation and VA improvement or stabilization in selected patients. Photocoagulation should be used sparingly to reduce the chance of producing a symptomatic paracentral scotoma and metamorphopsia. Small burns (100–200 μm) of moderate intensity in a grid-pattern and on multiple occasions, if necessary, are recommended. It is unnecessary to destroy every dilated capillary, and, particularly during the initial session of photocoagulation, those on the edge of the capillary-free zone should be avoided.
Intravitreal injections of triamcinolone acetonide (IVTA) which have proved to be beneficial in the treatment of macular edema by their anti-inflammatory effect, their downregulation of VEGF production, and stabilization of the blood retinal barrier were reported anecdotally in the management of macular telangiectasia type 1. In two case reports, IVTA of 4 mg allowed a transitory reduction of retinal edema, with variable or no increase in VA. As expected with all IVTA injections, the edema recurred within 3–6 months, and no permanent improvement could be shown.14,15 In general, the effect of IVTA is short-lived and complications, mainly increased intraocular pressure and cataract, limit its use.
Indocyanine green angiography-guided laser photocoagulation directed at the leaky microaneurysms and vessels combined with sub-Tenon’s capsule injection of triamcinolone acetonide has also been reported in a limited number of patients with macular telangiectasia type 1 with improvement or stabilization of vision after a mean follow-up of 10 months.16 Further studies are needed to assess the efficacy of this treatment modality.
Recently, intravitreal injections of anti-VEGF agents, namely bevacizumab, a humanized monoclonal antibody targeted against pro-angiogenic, circulatory VEGF, and ranibizumab, a FDA-approved monoclonal antibody fragment that targets all VEGF-A isoforms, have shown improved visual outcome and reduced leakage in macular edema form diabetes and retinal venous occlusions. In one reported patient with macular telangiectasia type 1, a single intravitreal bevacizumab injection resulted in a marked increase in VA from 20/50 to 20/20, with significant and sustained decrease in both leakage on FA and cystoid macular edema on OCT up to 12 months. It is likely that patients with macular telangiectasia type 1 with pronounced macular edema from leaky telangiectasis may benefit functionally and morphologically from intravitreal anti-VEGF injections, but this warrants further studies.
Today, laser photocoagulation remains mostly effective, but the optimal treatment of macular telangiectasia type 1 is questioned, and larger series comparing different treatment modalities seem warranted. The rarity of the disease however, makes it difficult to assess in a controlled randomized manner.
However, these treatment modalities should be considered only in cases of marked and rapid vision loss secondary to macular edema or CNV. Otherwise, a conservative approach is recommended, since many of these patients will stabilize without intervention.
The appropriate treatment for binocular diplopia will depend upon the cause of the condition producing the symptoms. Efforts must first be made to identify and treat the underlying cause of the problem. Treatment options include eye exercises, wearing an eye patch on alternative eyes, prism correction, and in more extreme situations, surgery or botulinum toxin.
If diplopia turns out to be intractable, it can be managed as last resort by obscuring part of the patient's field of view. This approach is outlined in the article on diplopia occurring in association with a condition called "horror fusionis".
Careful eye examination by an ophthalmologist or optometrist is critical for diagnosing symptomatic VMA. Imaging technologies such as optical coherence tomography (OCT) have significantly improved the accuracy of diagnosing symptomatic VMA.
A new FDA approved drug was released on the market late 2013. Jetrea (Brand name) or Ocriplasmin (Generic name) is the first drug of its kind used to treat vitreomacular adhension.
Mechanism of Action: Ocriplasmin is a truncated human plasmin with proteolytic activity against protein components of the vitreous body and vitreretinal interface. It dissolves the protein matrix responsible for the vitreomacular adhesion.
Adverse drug reactions: Decreased vision, potential for lens sublaxation, dyschromatopsia (yellow vision), eye pain, floaters, blurred vision.
New Drug comparison Rating gave Jetea a 5 indicating an important advance.
Previously, no recommended treatment was available for the patient with mild symptomatic VMA. In symptomatic VMA patients with more significant vision loss, the standard of care is pars plana vitrectomy (PPV), which involves surgically removing the vitreous from the eye, thereby surgically releasing the symptomatic VMA. In other words, vitrectomy induces PVD to release the traction/adhesion on the retina. An estimated 850,000 vitrectomy procedures are performed globally on an annual basis with 250,000 in the United States alone.
A standard PPV procedure can lead to serious complications including small-gauge PPV. Complications can include retinal detachment, retinal tears, endophthalmitis, and postoperative cataract formation. Additionally, PPV may result in incomplete separation, and it may potentially leave a nidus for vasoactive and vasoproliferative substances, or it may induce development of fibrovascular membranes. As with any invasive surgical procedure, PPV introduces trauma to the vitreous and surrounding tissue.
There are data showing that nonsurgical induction of PVD using ocriplasmin (a recombinant protease with activity against fibronectin and laminin) can offer the benefits of successful PVD while eliminating the risks associated with a surgical procedure, i.e. vitrectomy. Pharmacologic vitreolysis is an improvement over invasive surgery as it induces complete separation, creates a more physiologic state of the vitreomacular interface, prevents the development of fibrovascular membranes, is less traumatic to the vitreous, and is potentially prophylactic. As of 2012, ThromboGenics is still developing the ocriplasmin biological agent. Ocriplasmin is approved recently under the name Jetrea for use in the United States by the FDA.view.
An experimental test of injections of perfluoropropane (CF) on 15 symptomatic eyes of 14 patients showed that vitreomacular traction resolved in 6 eyes within 1 month and resolved in 3 more eyes within 6 months.
Treatment is based
on the stage of the disease. Stage 1 does not
require treatment and
should be observed. 4
Neovascularization
(stage 2) responds well
to laser ablation or
cryotherapy.2,4 Eyes
with retinal detachments (stages
3 through 5) require surgery, with
earlier stages requiring scleral
buckles and later stages ultimately
needing vitrectomy. 2,4
More recently, the efficacy of
anti-VEGF intravitreal injections
has been studied. In one study,
these injections, as an in adjunct
with laser, helped early stages
achieve stabilization, but further
investigation is needed.6
Photic retinopathy generally goes away on its own over time, but there is no specific treatment known to be reliable for speeding recovery. One path sometimes attempted, which has unclear results, is to treat the initial macular edema with corticosteroids.
Several options exist for the treatment of BRVO. These treatments aim for the two of the most significant complications of BRVO, namely macular edema and neovascularization.
- Systemic treatment with oral Aspirin, subcutaneous Heparin, or intravenous thrombolysis have not been shown to be effective treatments for CRVO and for BRVO no reliable clinical trial has been published.
- Laser treatment of the macular area to reduce macular edema is indicated in patients who have 20/40 or worse vision and did not spontaneously improve for at least 3 months (to permit the maximum spontaneous resolution) after the development of the vein occlusion. It is typically administered with the argon laser and is focused on edematous retina within the arcades drained by the obstructed vein and avoiding the foveal avascular zone. Leaking microvascular abnormalities may be treated directly, but prominent collateral vessels should be avoided.
- The second indication of laser treatment is in case of neovascularization. Retinal photocoagulation is applied to the involved retina to cover the entire involved segment, extending from the arcade out to the periphery. Ischemia alone is not an indication for treatment provided that follow-up could be maintained.
- Preservative-free, nondispersive Triamcinolone acetonide in 1 or 4 mg dosage may be injected into the vitreous to treat macular edema but has complications including elevated intraocular pressure and development of cataract. Triamcinolone injection is shown to have similar effect on visual acuity when compared with standard care (Laser therapy), However, the rates of elevated intraocular pressure and cataract formation is much higher with the triamcinolone injection, especially the higher dosage. Intravitreal injection of Dexamethasone implant (Ozurdex; 700,350 μg) is being studied, its effect may last for 180 days. The injection may be repeated however with less pronounced effect. Although the implant was designed to cause less complications, pressure rise and cataract formation is noted with this treatment too.
- Anti-VEGF drugs such as Bevacizumab (Avastin; 1.25 -2.5 mg in 0.05ml) and Ranibizumab (lucentis) injections are being used and investigated. Intravitreal anti-VEGFs have a low incidence of adverse side effects compared with intravitreal corticosteroids, but are currently short acting requiring frequent injections. Anti-VEGF injection may be used for macular edema or neovascularization. The mechanism of action and duration of anti-VEGF effect on macular edema is currently unknown. The intraocular levels of VEGF are increased in eyes with macular edema secondary to BRVO and the elevated VEGF levels are correlated to the degree and severity of the areas of capillary nonperfusion and macular edema.
- Surgery is employed occasionally for longstanding vitreous hemorrhage and other serious complications such as epiretinal membrane and retinal detachment.
- Arteriovenous sheathotomy has been reported in small, uncontrolled series of patients with BRVO. BRVO typically occurs at arteriovenous crossings, where the artery and vein share a common adventitial sheath. In arteriovenous sheathotomy an incision is made in the adventitial sheath adjacent to the arteriovenous crossing and is extended along the membrane that holds the blood vessels in position to the point where they cross, the overlying artery is then separated from the vein.
Optic pits should be diagnosed by an eye care professional who can perform a thorough exam of the back of the eye using an ophthalmoscope.
More recently, the development of a special technology called optical coherence tomography (OCT) has allowed better visualization of the retinal layers. It has been used to demonstrate a marked reduction in the thickness of the retinal nerve fiber layer in the quadrant corresponding to the optic pit. This is not yet in standard use for diagnosis of an optic pit, but may be helpful in supporting a diagnosis.
This may be present in conditions causing traction on the retina especially at the macula. This may occur in:
a) The vitreomacular traction syndrome; b) Proliferative diabetic retinopathy with vitreoretinal traction; c) Atypical cases of impending macular hole.
The most common way to treat forms of aniseikonia, including macropsia, is through the use of auxiliary optics to correct for the magnification properties of the eyes. This method includes changing the shape of spectacle lenses, changing the vertex distances with contact lenses, creating a weak telescope system with contact lenses and spectacles, and changing the power of one of the spectacle lenses. Computer software, such as the Aniseikonia Inspector, has been developed to determine the prescription needed to correct for a certain degree of aniseikonia. The problem with correction through optical means is that the optics do not vary with field angle and thus cannot compensate for non-uniform macropsia. Patients have reported significantly improved visual comfort associated with a correction of 5-10% of the aniseikonia.
With regard to drug-induced or virus-induced macropsia, once the underlying problem, either drug abuse or viral infection, is treated, the induced macropsia ceases.
The most prevalent research on prescription drugs with side effects of macropsia deals with zolpidem and citalopram. Zolpidem is a drug prescribed for insomnia, and although it has proven beneficial effects, there have been numerous reported cases of adverse perceptual reactions. One of these cases discusses an anorexic woman’s episode of macropsia, which occurred twenty minutes after taking 10 mg zolpidem. The same woman later had two more episodes of zolpidem-induced macropsia, after taking 5 mg and 2.5 mg zolpidem, respective to each episode. The intensity of the macropsia episodes decreased with the decreasing amount of zolpidem administered; it is implied in the article that the level of intensity was based on the patients accounts of her macropsia episodes, and that no external diagnosis was used. Hoyler points out notable similarities among the different reported cases of zolpidem-induced disorganization. The similarities were that all the cases were reported by women, the disorganization and agitation followed the first administration of zolpidem, and once zolpidem was discontinued, there were no lasting residual effects. It is believed that zolpidem-related macropsia is more prevalent in women because plasma zolpidem concentration is 40% higher in women, a concentration that further increases in anorexic women.
Citalopram-induced macropsia is similar to zolpidem-induced macropsia since both types have been observed in relatively few cases, and neither of the drugs’ side effects can be supported by experimental evidence. Citalopram is an antidepressant that inhibits serotonin reuptake. The first case of macropsia thought to be induced by citalopram involves a woman who experienced macropsia after her first administration of 10 mg citalopram. Just as with zolpidem, after the immediate discontinuation of citalopram, there were no further episodes of macropsia.
Generally speaking, people diagnosed with photic retinopathy recover visual acuity completely within two months, though more severe cases may take longer, or not see complete recovery at all.
Temporary binocular diplopia can be caused by alcohol intoxication or head injuries, such as concussion (if temporary double vision does not resolve quickly, one should see an optometrist or ophthalmologist immediately). It can also be a side effect of benzodiazepines or opioids, particularly if used in larger doses for recreation, the anti-epileptic drugs Phenytoin and Zonisamide, and the anti-convulsant drug Lamotrigine, as well as the hypnotic drug Zolpidem and the dissociative drugs Ketamine and Dextromethorphan. Temporary diplopia can also be caused by tired and/or strained eye muscles or voluntarily. If diplopia appears with other symptoms such as fatigue and acute or chronic pain, the patient should see an ophthalmologist immediately.
Vitreomacular adhesion (VMA) is a human medical condition where the vitreous gel (or simply vitreous) of the human eye adheres to the retina in an abnormally strong manner. As the eye ages, it is common for the vitreous to separate from the retina. But if this separation is not complete, i.e. there is still an adhesion, this can create pulling forces on the retina that may result in subsequent loss or distortion of vision. The adhesion in of itself is not dangerous, but the resulting pathological vitreomacular traction (VMT) can cause severe ocular damage.
The current standard of care for treating these adhesions is pars plana vitrectomy (PPV), which involves surgically removing the vitreous from the eye. A biological agent for non-invasive treatment of adhesions called ocriplasmin has been approved by the FDA on Oct 17 2012.
In general, BRVO has a good prognosis: after 1 year 50–60% of eyes have been reported to have a final VA of 20/40 or better even without any treatment. With time the dramatic picture of an acute BRVO becomes more subtle, hemorrhages fade so that the retina can look almost normal. Collateral vessels develop to help drain the affected area.
There is no treatment that directly interferes with the disease process, although dietary restriction of calcium has been tried with limited results. For excessive areas of skin, plastic surgery may be needed. For the growth of abnormal blood vessels in the retina, laser photocoagulation and photodynamic therapy may be used; injections with triamcinolone have shown limited effect. Antiangiogenic drugs such as bevacizumab (Avastin) and ranibizumab (Lucentis) have been effective, similar to its efficacy in age-related macular degeneration. Cardiovascular disease is treated as in individuals without PXE. Some recommend avoidance of nonsteroidal anti-inflammatory drugs (NSAIDS) that increase bleeding risk, such as aspirin, and ibuprofen.
Berlin's edema (commotio retinae) is a common condition caused by blunt injury to the eye. It is characterized by decreased vision in the injured eye a few hours after the injury. Under examination the retina appears opaque and white in colour in the periphery but the blood vessels are normally seen along with "cherry red spot" in the foveal reigion.This whitening is indicative of cell damage, which occurs in the retinal pigment epithelium and outer segment layer of photoreceptors. Damage to the outer segment often results in photoreceptor death through uncertain mechanisms. Usually there is no leakage of fluid and therefore it is not considered a true edema. The choroidal fluorescence in fluorescent angiography is absent. Visual acuity ranges from 20/20 to 20/400.
The prognosis is excellent except in case of complications of choroidal rupture, hemorrhage or pigment epithelial damage, but damage to the macula will result in poorer recovery. The outcome can be worsened in the case of retinal detachment, atrophy or hyperplasia. Visual field defects can occur. In late cases cystoid macular edema sometimes develops which can further lead to macular destruction.
Commotio retinae is usually self limiting and there is no treatment as such. It usually resolves in 3–4 weeks without any complications and sequelae.
Aniridia is the absence of the iris, usually involving both eyes. It can be congenital or caused by a penetrant injury. Isolated aniridia is a congenital disorder which is not limited to a defect in iris development, but is a panocular condition with macular and optic nerve hypoplasia, cataract, and corneal changes. Vision may be severely compromised and the disorder is frequently associated with a number of ocular complications: nystagmus, amblyopia, buphthalmos, and cataract. Aniridia in some individuals occurs as part of a syndrome, such as WAGR syndrome (kidney nephroblastoma (Wilms tumour), genitourinary anomalies and intellectual disability), or Gillespie syndrome (cerebellar ataxia).
Macular hypoplasia, also known as foveal hypoplasia, is a rare medical condition involving the underdevelopment of the macula, a small area on the retina (the eye's internal surface) responsible for seeing in detail. Macular hypoplasia is often associated with albinism.