Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The aim in cerebral amyloid angiopathy is to treat the symptoms, as there is no current cure. Physical and/or speech therapy may be helpful in the management of this condition.
Treatment depends on the type of amyloidosis that is present. Treatment with high dose melphalan, a chemotherapy agent, followed by stem cell transplantation has showed promise in early studies and is recommended for stage I and II AL amyloidosis. However, only 20–25% of people are eligible for stem cell transplant. Chemotherapy and steroids, with melphalan plus dexamethasone, is mainstay treatment in AL people not eligible for transplant.
In AA, symptoms may improve if the underlying condition is treated; eprodisate has been shown to slow renal impairment by inhibiting polymerization of amyloid fibrils.
In ATTR, liver transplant is a curative therapy because mutated transthyretin which forms amyloids is produced in the liver.
People affected by amyloidosis are supported by multiple organizations, including the Amyloidosis Foundation, Amyloidosis Support Groups Inc., and Amyloidosis Australia, Inc.
The most effective treatment is autologous bone marrow transplants with stem cell rescues. However many patients are too weak to tolerate this approach.
Other treatments can involve application of chemotherapy similar to that used in multiple myeloma. A combination of melphalan and dexamethasone has been found effective in those who are ineligible for stem cell transplantation, and a combination of bortezomib and dexamethasone is now in widespread clinical use.
Liver transplantation has proven to be effective for ATTR familial amyloidosis due to Val30Met mutation.
Alternatively, a European Medicines Agency approved drug Tafamidis or Vyndaqel now exists which stabilizes transthyretin tetramers comprising wild type and different mutant subunits against amyloidogenesis halting the progression of peripheral neuropathy and autonomic nervous system dysfunction.
Currently there are two ongoing clinical trials undergoing recruitment in the United States and worldwide to evaluate investigational medicines that could possibly treat TTR.
No drug has been shown to be able to arrest or slow down the process of this condition. There is promise that two drugs, tafamidis and diflunisal, may improve the outlook, since they were demonstrated in randomized clinical trials to benefit patient affected by the related condition FAP-1 otherwise known as transthyretin-related hereditary amyloidosis. Permanent pacing can be employed in cases of symptomatic slow heart rate (bradycardia). Heart failure medications can be used to treat symptoms of difficulty breathing and congestion.
There is no standard treatment for LCDD. High-dose melphalan in conjunction with autologous stem cell transplantation has been used in some patients. A regimen of bortezomib and dexamethasone has also been examined.
Median survival for patients diagnosed with AL amyloidosis was 13 months in the early 1990s, but had improved to c. 40 months a decade later.
Kiacta - (eprodisate disodium) is in 2015 being evaluated as a protector of renal function in AA amyloidosis. Kiacta, inhibits the formation and deposition of the amyloid A fibrils into the tissues.
Treatments are generally directed toward stopping the inflammation and suppressing the immune system. Typically, corticosteroids such as prednisone are used. Additionally, other immune suppression drugs, such as cyclophosphamide and others, are considered. In case of an infection, antimicrobial agents including cephalexin may be prescribed. Affected organs (such as the heart or lungs) may require specific medical treatment intended to improve their function during the active phase of the disease.
There has too little experience on the treatment of LECT2 amyloidosis to establish recommendations other than offering methods to support kidney function and dialysis. Nonetheless, it is important to accurately diagnose ALECT2-based amyloid disease in order to avoid treatment for other forms of amyloidosis.
In a healthy individual, the median plasma concentration of SAA is 3 mg per liter. This can increase to over 2000 mg per liter during an acute phase response and a sustained overproduction of SAA is required for the creation of the AA deposits that define AA amyloidosis. High levels of SAA, however, is not a sufficient condition for the development of systemic AA amyloidosis and it remains unclear what triggers the accumulation of AA.
The AA protein is mainly deposited in the liver, spleen and kidney, and AA amyloidosis can lead to nephrotic syndrome and ESRD. Natural history studies show, however, that it is the renal involvement that drives the progression of the disease. In general, old age, reduced serum albumin concentration, end stage renal failure, and sustained elevated SAA concentration are all associated with poor prognosis.
There are currently no approved treatments for systemic AA amyloidosis. The current standard of care includes treatments for the underlying inflammatory disease with anti-inflammatory drugs, immunosuppressive agents or biologics. AA amyloidosis patients are also receiving treatments to slow down the decline of their renal function, such as angiotensin II receptor blockers or angiotensin converting enzyme inhibitors.
Intracerebral hemorrhages is a severe condition requiring prompt medical attention. Treatment goals include lifesaving interventions, supportive measures, and control of symptoms. Treatment depends on the location, extent, and cause of the bleeding. Often, treatment can reverse the damage that has been done.
A craniotomy is sometimes done to remove blood, abnormal blood vessels, or a tumor. Medications may be used to reduce swelling, prevent seizures, lower blood pressure, and control pain.
Treatment for cerebrovascular disease may include medication, lifestyle changes and/or surgery, depending on the cause.
Examples of medications are:
- antiplatelets (aspirin, clopidogrel)
- blood thinners (heparin, warfarin)
- antihypertensives (ACE inhibitors, beta blockers)
- anti-diabetic medications.
Surgical procedures include:
- endovascular surgery and vascular surgery (for future stroke prevention).
The drug tafamidis has completed a phase II/III 18-month-long placebo controlled clinical trial
and these results in combination with an 18-month follow-on study demonstrated that Tafamidis or Vyndaqel slowed progression of FAP, particularly when administered to patients early in the course of FAP. This drug is now approved by the European Medicines Agency.
The US Food and Drug Administration's Peripheral and Central Nervous System Drugs Advisory Committee rejected the drug in June 2012, in a 13-4 vote. The committee stated that there was not enough evidence supporting efficacy of the drug, and requested additional clinical trials.
In the absence of a liver transplant, FAP is invariably fatal, usually within a decade. The disadvantage of liver transplantation is that approximately 10% of the subjects die from the procedure or complications resulting from the procedure, which is a form of gene therapy wherein the liver expressing wild type and mutant TTR is replaced by a liver only expressing wild type TTR. Moreover, transplanted patients must take immune suppressants (drugs) for the remainder of their life, which can lead to additional complications. In late 2011, the European Medicines Agency approved the transthyretin kinetic stabilizer Tafamidis or Vyndaqel discovered by Jeffery W. Kelly and developed by FoldRx pharmaceuticals (acquired by Pfizer in 2010) for the treatment of FAP based on clinical trial data. Tafamidis (20 mg once daily) slowed the progression of FAP over a 36-month period and importantly reversed the weight loss and muscle wasting associated with disease progression.
There have been attempts to control the inflammation using drugs that work in other conditions where inflammation is a problem. The most successful of these are steroids, but they have side effects when used long term. Other medications, including methotrexate, colchicine and canakinumab, have been tried with some success. Otherwise, the treatment is supportive, or aimed solely at controlling symptoms and maximizing function.
The first line treatment for polymyositis is corticosteroids. Specialized exercise therapy may supplement treatment to enhance quality of life.
Asymptomatic individuals with intracranial stenosis are typically told to take over the counter platelet inhibitors like aspirin whereas those with symptomatic presentation are prescribed anti-coagulation medications. For asymptomatic persons the idea is to stop the buildup of plaque from continuing. They are not experiencing symptoms; however if more build up occurs it is likely they will. For symptomatic individuals it is necessary to try and reduce the amount of stenosis. The anti-coagulation medications reduce the likelihood of further buildup while also trying to break down the current build up on the surface without an embolism forming. For those with severe stenosis that are at risk for impending stroke endovascular treatment is used. Depending on the individual and the location of the stenosis there are multiple treatments that can be undertaken. These include angioplasty, stent insertion, or bypass the blocked area.
Although not based on a human clinical trial, the only currently accepted disease-modifying therapeutic strategy available for familial amyloid cardiomyopathy is a combined liver and heart transplant. Treatments aimed at symptom relief are available, and include diuretics, pacemakers, and arrhythmia management. Thus, Senile systemic amyloidosis and familial amyloid polyneuropathy are often treatable diseases that are misdiagnosed.
In 2013, the European Medicines Agency approved the drug tafamidis (Vyndaqel) to slow the progression of familial amyloid polyneuropathy, a related disease caused by TTR aggregation that first presents as an autonomic and/or peripheral neuropathy (later progressing to a cardiomyopathy).
Prognosis varies with the type of amyloidosis. Prognosis for untreated AL amyloidosis is poor with median survival of one to two years. More specifically, AL amyloidosis can be classified as stage I, II or III based on cardiac biomarkers like troponin and BNP. Survival diminishes with increasing stage, with estimated survival of 26, 11 and 3.5 months at stages I, II and III, respectively.
Outcomes in a person with AA amyloidosis depend on the underlying disease and correlate with the concentration of serum amyloid A protein.
People with ATTR have better prognosis and may survive for over a decade.
Senile systemic amyloidosis was determined to be the primary cause of death for 70% of people over 110 who have been autopsied.
Benign tumors may not require treatment but may need to be monitored for any change in the growth. Growth of the tumors in the nose, lips, or eyelids can be treated with steroid drugs to slow its progress. Steroids can be taken orally or injected directly into the tumor. Applying pressure to the tumor can also be used to minimize swelling at the site of the hemangioma. A procedure that uses small particles to close off the blood supply is known as sclerotherapy. This allows for tumor shrinkage and less pain. It is possible for the tumor to regrow its blood supply after the procedure has been done. If the lesion caused by the cavernous hemangioma is destroying healthy tissue around it or if the patient is experiencing major symptoms, then surgery can be used to remove the tumor piecemeal. A common complication of the surgery is hemorrhage and the loss of blood. There is also the possibility of the hemangioma reoccurring after its removal. Additionally, the risk of a stroke or death is also possible.
As of 2014, no treatment strategy has yet been investigated in a randomized clinical trial. Verapamil, nimodipine, and other calcium channel blockers may help reduce the intensity and frequency of the headaches. A clinician may recommend rest and the avoidance of activities or vasoactive drugs which trigger symptoms (see § Causes). Analgesics and anticonvulsants can help manage pain and seizures, respectively.
Treatment depends substantially of the type of ICH. Rapid CT scan and other diagnostic measures are used to determine proper treatment, which may include both medication and surgery.
- Tracheal intubation is indicated in people with decreased level of consciousness or other risk of airway obstruction.
- IV fluids are given to maintain fluid balance, using isotonic rather than hypotonic fluids.
There is no standard course of treatment to slow or stop the progression of the disease. sIBM patients do not reliably respond to the anti-inflammatory, immunosuppressant, or immunomodulatory medications. Management is symptomatic. Prevention of falls is an important consideration. Specialized exercise therapy may supplement treatment to enhance quality of life. Physical therapy is recommended to teach the patient a home exercise program, to teach how to compensate during mobility-gait training with an assistive device, transfers and bed mobility.
It is usually associated with amyloid beta.
However, there are other types:
- the "Icelandic type" is associated with Cystatin C
- the "British type" is associated with ITM2B
Research is currently being conducted to determine if there is a link between cerebral amyloid angiopathy and ingestion of excessive quantities of aluminum.