Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Early and aggressive treatment is important to prevent irreversible neurological damage, hearing loss, or vision loss. Medications used include immunosuppressive agents and corticosteroids such a prednisone, or intravenous immunoglobulins (IVIG). Other drugs that have been used are mycophenolate mofetil (Cellcept), azathioprine (Imuran), cyclophosphamide, rituximab, and anti-TNF therapies.
Hearing aids or cochlear implants may be necessary in the event of hearing loss.
Bisphosphonate therapy has been suggested as a first-line therapeutic option in many case reports and series.
Treatment with tumor necrosis factor alpha antagonists (TNF inhibitors) have been tried in few patients with limited success. Other drugs that are used in psoriatic arthritis, to which SAPHO syndrome is closely related, have also been used in this condition. They include NSAIDs, corticosteroids, sulfasalazine, methotrexate, ciclosporin and leflunomide.
Some patients have responded to antibiotics. The rationale for their use is that Propionibacterium acnes, a bacterium known for its role in acne, has been isolated from bone biopsies of SAPHO patients.
Guidelines for management of patients up to 18 years with Langerhans cell histiocytosis has been suggested. Treatment is guided by extent of disease. Solitary bone lesion may be amenable through excision or limited radiation, dosage of 5-10 Gys for children, 24-30 Gys for adults. However systemic diseases often require chemotherapy. Use of systemic steroid is common, singly or adjunct to chemotherapy. Local steroid cream is applied to skin lesions. Endocrine deficiency often require lifelong supplement e.g. desmopressin for diabetes insipidus which can be applied as nasal drop. Chemotherapeutic agents such as alkylating agents, antimetabolites, vinca alkaloids either singly or in combination can lead to complete remission in diffuse disease.
Owing to the self-limiting nature of the disease, treatment is generally not required. In cases where lesions appear to be interfering with the optic nerve, methyl prednisone is prescribed.
What happens after your child is diagnosed with CRMO/CNO?
Find a doctor who has experience with patients with CRMO/CNO. CRMO/CNO in children is generally treated by a pediatric rheumatologist. Ask your doctor for a referral.
Why do we treat CRMO/CNO?
- Reduce inflammation
- Prevent bone damage and bone deformities
- Decrease pain
How is CRMO/CNO treated?
CRMO/CNO is different for each patient. Not every child responds to every treatment. Your doctor may need to try several medications before finding the one that works for your child. In severe cases, doctors may combine medications to treat the disease. Your doctor will work with you and your child to help find the best treatment.
For some CRMO/CNO patients, the disease can be managed with non-steroidal anti-inflammatory drugs (NSAIDs). NSAIDs are the first line treatment. However, if NSAIDs are not effective, or if your child does not tolerate NSAIDs well, second line treatments are available.
First line treatments include Naproxen (Aleve), Celecoxib (Celebrex) Meloxicam (Mobic), Piroxicam (Feldene), Indomethacin (Indocin), Diclofenac (Voltaren).
Second line treatments include corticosteroids (Prednisone/Prednisolone), Methotrexate (Otrexup, Rasuvo, Trexall), Sulfasalazine (Azulfidine), Pamidronate (Aredia), Zolendronic Acid (Zometa), Adalimumab (Humira), Etanercept (Enbrel), Infliximab (Remicade).
These medications are also used in children with other inflammatory and/or bone conditions. Side effects may occur while taking these medications. Your physician will have a discussion with you prior to starting any new treatment.
First-line treatment for CIDP is currently intravenous immunoglobulin (IVIG) and other treatments include corticosteroids (e.g. prednisone), and plasmapheresis (plasma exchange) which may be prescribed alone or in combination with an immunosuppressant drug. Recent controlled studies show subcutaneous immunoglobin (SCIG) appears to be as effective for CIDP treatment as IVIG in most patients, and with fewer systemic side effects.
IVIG and plasmapheresis have proven benefit in randomized, double-blind, placebo-controlled trials. Despite less definitive published evidence of efficacy, corticosteroids are considered standard therapies because of their long history of use and cost effectiveness. IVIG is probably the first-line CIDP treatment, but is extremely expensive. For example, in the U.S., a single 65 g dose of Gamunex brand in 2010 might be billed at the rate of $8,000 just for the immunoglobulin—not including other charges such as nurse administration. Gamunex brand IVIG is the only U.S. FDA approved treatment for CIDP, as in 2008 Talecris, the maker of Gamunex, received orphan drug status for this drug for the treatment of CIDP.
Immunosuppressive drugs are often of the cytotoxic (chemotherapy) class, including rituximab (Rituxan) which targets B cells, and cyclophosphamide, a drug which reduces the function of the immune system. Ciclosporin has also been used in CIDP but with less frequency as it is a newer approach. Ciclosporin is thought to bind to immunocompetent lymphocytes, especially T-lymphocytes.
Non-cytotoxic immunosuppressive treatments usually include the anti-rejection transplant drugs azathioprine (Imuran/Azoran) and mycophenolate mofetil (Cellcept). In the U.S., these drugs are used as "off-label" treatments for CIDP, meaning that their use here is accepted by the FDA, but that CIDP treatment is not explicitly indicated or approved in the drug literature. Before azathioprine is used, the patient should first have a blood test that ensures that azathioprine can safely be used.
Anti-thymocyte globulin (ATG), an immunosuppressive agent that selectively destroys T lymphocytes is being studied for use in CIDP. Anti-thymocyte globulin is the gamma globulin fraction of antiserum from animals that have been immunized against human thymocytes. It is a polyclonal antibody.
Although chemotherapeutic and immunosuppressive agents have shown to be effective in treating CIDP, significant evidence is lacking, mostly due to the heterogeneous nature of the disease in the patient population in addition to the lack of controlled trials.
A review of several treatments found that azathioprine, interferon alpha and methotrexate were not effective. Cyclophosphamide and rituximab seem to have some response. Mycophenolate mofetil may be of use in milder cases. Immunoglobulin and steroids are the first line choices for treatment. Rarely bone marrow transplantation has been performed.
Physical therapy and occupational therapy may improve muscle strength, activities of daily living, mobility, and minimize the shrinkage of muscles and tendons and distortions of the joints.
Excellent for single-focus disease. With multi-focal disease 60% have a chronic course, 30% achieve remission and mortality is up to 10%.
In terms of treatment a 2013 review indicates that colchicine can be used for DIRA. Additionally there are several other management options such as anakinra, which blocks naturally occurring IL-1, this according to a 2016 pediatric textbook.
The acute uveitis phase of VKH is usually responsive to high-dose oral corticosteroids; parenteral administration is usually not required. However, ocular complications may require an subtenon or intravitreous injection of corticosteroids or bevacizumab. In refractory situations, other immunosuppressives such as cyclosporine, or tacrolimus, antimetabolites (azathioprine, mycophenolate mofetil or methotrexate), or biological agents such as intravenous immunoglobulins (IVIG) or infliximab may be needed.
Treatment may involve smoking cessation and prescription of topical or systemic antifungal medication. Usually the mucosal changes resolve with antifungal therapy, but sometimes the lesion is resistant to complete resolution.
Multifocal fibrosclerosis and idiopathic fibrosclerosis are disorders of unknown aetiology, characterised by fibrous lesions (co-)occurring at a variety of sites. Known manifestations include retroperitoneal fibrosis, mediastinal fibrosis and Riedel's thyroiditis.
They are now considered to be manifestations of IgG4-related disease.
Visual prognosis is generally good with prompt diagnosis and aggressive immunomodulatory treatment. Inner ear symptoms usually respond to corticosteroid therapy within weeks to months; hearing usually recovers completely. Chronic eye effects such as cataracts, glaucoma, and optic atrophy can occur. Skin changes usually persist despite therapy.
In the treatment of polyneuropathies one must ascertain and manage the cause, among management activities are: weight decrease, use of a walking aid, and occupational therapist assistance. Additionally BP control in those with diabetes is helpful, while intravenous immunoglobulin is used for multifocal motor neuropathy.
According to Lopate, et al., methylprednisolone is a viable treatment for chronic inflammatory demyelinative polyneuropathy (which can also be treated with intravenous immunoglobulin) The author(s) also indicate that prednisone has greater adverse effects in such treatment, as opposed to intermittent (high-doses) of the aforementioned medication.
According to Wu, et al., in critical illness polyneuropathy supportive and preventive therapy are important for the affected individual, as well as, avoiding (or limiting) corticosteroids.
There are no effective drugs that inhibit or cure the virus infection without toxicity. Therefore, treatment aims at reversing the immune deficiency to slow or stop the disease progress. In patients on immunosuppression, this means stopping the drugs or using plasma exchange to accelerate the removal of the biologic agent that put the person at risk for PML.
In HIV-infected people, this may mean starting highly active antiretroviral therapy (HAART). AIDS patients starting HAART after being diagnosed with PML tend to have a slightly longer survival time than patients who were already on HAART and then develop PML. Some AIDS patients with PML have been able to survive for several years, with HAART. A rare complication of effective HAART is immune reconstitution inflammatory syndrome (IRIS), in which increased immune system activity actually increases the damage caused by the JCV infection; although IRIS can often be managed with medication, it is extremely dangerous in PML.
Cidofovir was studied as possible treatment for PML and has been used on a case by case basis, working in some, but not others.
Cytarabine (also known as ARA-C), a chemotherapy drug used to treat certain cancers, has been prescribed on an experimental basis for a small number of non-AIDS PML patients and stabilized the neurological condition of a minority of these patients. One patient regained some cognitive function lost as a result of PML.
In June 2010, the first case report appeared of a PML patient being successfully treated with the anti malaria drug mefloquine with activity against the JC virus. The patient cleared the virus and had no further neurological deterioration.
Two case reports of using interleukin-2 successfully have been published. Some success have been reported with mirtazapine, but this has not been demonstrated in clinical trials.
A number of drugs work against JC virus in cell culture, but there is no proven, effective therapy in humans.
For example, 1-O-hexadecyloxypropyl-cidofovir (CMX001), suppresses JCV but has been found to have toxicity at therapeutic dosage. The number of patients treated with other therapies is too low to demonstrate effectiveness.
Multifocal motor neuropathy is normally treated by receiving intravenous immunoglobulin (IVIG), which can in many cases be highly effective, or immunosuppressive therapy with cyclophosphamide or rituximab. Steroid treatment (prednisone) and plasmapheresis are no longer considered to be useful treatments; prednisone can exacerbate symptoms. IVIg is the primary treatment, with about 80% of patients responding, usually requiring regular infusions at intervals of 1 week to several months. Other treatments are considered in case of lack of response to IVIg, or sometimes because of the high cost of immunoglobulin. Subcutaneous immunoglobulin is under study as a less invasive, more-convenient alternative to IV delivery.
There is no treatment for the disorder. A number of studies are looking at gene therapy, exon skipping and CRISPR interference to offer hope for the future. Accurate determination through confirmed diagnosis of the genetic mutation that has occurred also offers potential approaches beyond gene replacement for a specific group, namely in the case of diagnosis of a so-called nonsense mutation, a mutation where a stop codon is produced by the changing of a single base in the DNA sequence. This results in premature termination of protein biosynthesis, resulting in a shortened and either functionless or function-impaired protein. In what is sometimes called "read-through therapy", translational skipping of the stop codon, resulting in a functional protein, can be induced by the introduction of specific substances. However, this approach is only conceivable in the case of narrowly circumscribed mutations, which cause differing diseases.
Vision improves in almost all cases. In rare cases, a patient may suffer permanent visual loss associated with lesions on their optic nerve.
Rarely, coexisting vasculitis may cause neurological complications. These occurrences can start with mild headaches that steadily worsen in pain and onset, and can include attacks of dysesthesia. This type of deterioration happens usually if the lesions involve the fovea.
A range of medications that act on the central nervous system has been found to be useful in managing neuropathic pain. Commonly used treatments include tricyclic antidepressants (such as nortriptyline or amitriptyline), the serotonin-norepinephrine reuptake inhibitor (SNRI) medication duloxetine, and antiepileptic therapies such as gabapentin, pregabalin, or sodium valproate. Few studies have examined whether nonsteroidal anti-inflammatory drugs are effective in treating peripheral neuropathy.
Symptomatic relief for the pain of peripheral neuropathy may be obtained by application of topical capsaicin. Capsaicin is the factor that causes heat in chili peppers. The evidence suggesting that capsaicin applied to the skin reduces pain for peripheral neuropathy is of moderate to low quality and should be interpreted carefully before using this treatment option. Local anesthesia often is used to counteract the initial discomfort of the capsaicin. Some current research in animal models has shown that depleting neurotrophin-3 may oppose the demyelination present in some peripheral neuropathies by increasing myelin formation.
High-quality evidence supports the use of cannabis for neuropathic pain.
The treatment of peripheral neuropathy varies based on the cause of the condition, and treating the underlying condition can aid in the management of neuropathy. When peripheral neuropathy results from diabetes mellitus or prediabetes, blood sugar management is key to treatment. In prediabetes in particular, strict blood sugar control can significantly alter the course of neuropathy. In peripheral neuropathy that stems from immune-mediated diseases, the underlying condition is treated with intravenous immunoglobulin or steroids. When peripheral neuropathy results from vitamin deficiencies or other disorders, those are treated as well.
A disease that threatens the eyesight and additionally produces a hair anomaly that is apparent to strangers causes harm beyond the physical. It is therefore not surprising that learning the diagnosis is a shock to the patient. This is as true of the affected children as of their parents and relatives. They are confronted with a statement that there are at present no treatment options. They probably have never felt so alone and abandoned in their lives. The question comes to mind, "Why me/my child?" However, there is always hope and especially for affected children, the first priority should be a happy childhood. Too many examinations and doctor appointments take up time and cannot practically solve the problem of a genetic mutation within a few months. It is therefore advisable for parents to treat their child with empathy, but to raise him or her to be independent and self-confident by the teenage years. Openness about the disease and talking with those affected about their experiences, even though its rarity makes it unlikely that others will be personally affected by it, will together assist in managing life.
As in multiple sclerosis, another demyelinating condition, it is not possible to predict with certainty how CIDP will affect patients over time. The pattern of relapses and remissions varies greatly with each patient. A period of relapse can be very disturbing, but many patients make significant recoveries.
If diagnosed early, initiation of early treatment to prevent loss of nerve axons is recommended. However, many individuals are left with residual numbness, weakness, tremors, fatigue and other symptoms which can lead to long-term morbidity and diminished quality of life.
It is important to build a good relationship with doctors, both primary care and specialist. Because of the rarity of the illness, many doctors will not have encountered it before. Each case of CIDP is different, and relapses, if they occur, may bring new symptoms and problems. Because of the variability in severity and progression of the disease, doctors will not be able to give a definite prognosis. A period of experimentation with different treatment regimens is likely to be necessary in order to discover the most appropriate treatment regimen for a given patient.
Depending on severity, therapies may range from topical or oral anti-inflammatories to irrigation and surgical repair.
Prognosis will depend on your child's individual disease and response to treatment. It is best to discuss the prognosis with your child's pediatric rheumatologist.
Uveitis is typically treated with glucocorticoid steroids, either as topical eye drops (prednisolone acetate) or as oral therapy. Prior to the administration of corticosteroids, corneal ulcers must be ruled out. This is typically done using a fluoresence dye test. In addition to corticosteroids, topical cycloplegics, such as atropine or homatropine, may be used. Successful treatment of active uveitis increases T-regulatory cells in the eye, which likely contributes to disease regression.
In some cases an injection of posterior subtenon triamcinolone acetate may also be given to reduce the swelling of the eye.
Antimetabolite medications, such as methotrexate are often used for recalcitrant or more aggressive cases of uveitis. Experimental treatments with Infliximab or other anti-TNF infusions may prove helpful.
The anti-diabetic drug metformin is reported to inhibit the process that causes the inflammation in uveitis.
In the case of herpetic uveitis, anti-viral medications, such as valaciclovir or aciclovir, may be administered to treat the causative viral infection.
Heck's disease (also known as focal or multifocal epithelial hyperplasia) is an asymptomatic, benign neoplastic condition characterized by multiple white to pinkish papules that occur diffusely in the oral cavity. Can present with slightly pale, smooth or roughened surface morphology. It is caused by the human papilloma virus types 13 and 32. It exhibits surface cells with vacuolated cytoplasm around irregular, pyknotic nuclei and occasional cells with mitosis-like changes within otherwise mature and well-differentiated epithelium. A distinguishing histologic feature is elongated rete ridges resembling Bronze Age axe with mitosoid bodies present. It was first identified in the Aboriginal population.
Over time, they will spontaneously regress without treatment. Possible treatment may be excisional biopsy for lesions of functional or aesthetic concern.