Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Corticosteroids such as prednisone improve recovery at 6 months and are thus recommended. Early treatment (within 3 days after the onset) is necessary for benefit with a 14% greater probability of recovery.
Physiotherapy can be beneficial to some individuals with Bell’s palsy as it helps to maintain muscle tone of the affected facial muscles and stimulate the facial nerve. It is important that muscle re-education exercises and soft tissue techniques be implemented prior to recovery in order to help prevent permanent contractures of the paralyzed facial muscles. To reduce pain, heat can be applied to the affected side of the face. There is no high quality evidence to support the role of electrical stimulation for Bell's palsy.
Although no cure exists, there are many different treatments which are currently being used to help control symptoms. These include short term treatment with some drugs (such as Botox) which relax the muscles, use of temperature changes to control muscle tremors, and a balanced approach of coordinated care and support involving physical therapists, orthopedic surgeons, and psychiatrists.
Because there is no cure for ataxic cerebral palsy, current methods of treatment are diverse, often consisting of multiple focuses designed to limit the severity of symptoms. Many children suffering from ataxic cerebral palsy are treated by teams consisting of individuals from numerous disciplines, including physical therapists, occupational therapist, orthopedic surgeons, and psychiatrists. Treatment by such teams involves multiple approaches. Providing a primary care medical home to support children suffering from common symptoms of nutritional deficiencies, pain, dental care, bowel and bladder continence, and orthopedic complications is an essential aspect of treatment. In addition, utilizing diagnostic techniques to identify the nature and severity of brain abnormalities has become increasingly beneficial for treatment in recent years.
Different medications have been used to temporarily treat ataxic cerebral palsy. Medications like primidone and benzodiazepine, while not recommended for long term use, can alleviate some of the tremor symptoms. Botox which relaxes tightened muscles has been effective in treating voice, hand and head tremors. A few recently published papers outlined a potential method for treating intention tremor which consisted of cooling the forearm by wrapping it in a cryomanchet using a circulating fluid. After the treatment most patients experienced reduced tremor for up to half an hour. This practical, however short-term treatment can facilitate performing normal daily activities like applying make up, eating, or signing documents. This potential treatment method is also significant in that it reduces one’s reliance on caregivers.
No specific treatment is known that would prevent, slow, or reverse HSP. Available therapies mainly consist of symptomatic medical management and promoting physical and emotional well-being. Therapeutics offered to HSP patients include:
- Baclofen – a voluntary muscle relaxant to relax muscles and reduce tone. This can be administered orally or intrathecally. (Studies in HSP )
- Tizanidine – to treat nocturnal or intermittent spasms (studies available )
- Diazepam and clonazepam – to decrease intensity of spasms
- Oxybutynin chloride – an involuntary muscle relaxant and spasmolytic agent, used to reduce spasticity of the bladder in patients with bladder control problems
- Tolterodine tartate – an involuntary muscle relaxant and spasmolytic agent, used to reduce spasticity of the bladder in patients with bladder control problems
- Botulinum toxin – to reduce muscle overactivity (existing studies for HSP patients)
- Antidepressants (such as selective serotonin re-uptake inhibitors, tricyclic antidepressants and monoamine oxidase inhibitors) – for patients experiencing clinical depression
- Physical therapy – to restore and maintain the ability to move; to reduce muscle tone; to maintain or improve range of motion and mobility; to increase strength and coordination; to prevent complications, such as frozen joints, contractures, or bedsores.
Mild cases of hemifacial spasm may be managed with sedation or carbamazepine (an anticonvulsant drug). Microsurgical decompression and botulinum toxin injections are the current main treatments used for hemifacial spasm.
Botulinum toxin is highly effective in the treatment of hemifacial spasm. It has a success rate equal to that of surgery, but repeated injections may be required every 3 to 6 months. The injections are administered as an outpatient or office procedure. Whilst side effects occur, these are never permanent. Repeated injections over the years remain highly effective. Whilst the toxin is expensive, the cost of even prolonged courses of injections compares favourably with the cost of surgery. Patients with HFS should be offered a number of treatment options. Very mild cases or those who are reluctant to have surgery or Botulinum toxin injections can be offered medical treatment, sometimes as a temporary measure. In young and fit patients microsurgical decompression and Botulinum injections should be discussed as alternative procedures. In the majority of cases, and especially in the elderly and the unfit, Botulinum toxin injection is the treatment of first choice. Imaging procedures should be done in all unusual cases of hemifacial spasm and when surgery is contemplated. Patients with hemifacial spasm were shown to have decreased sweating after botulinum toxin injections. This was first observed in 1993 by Khalaf Bushara and David Park. This was the first demonstration of nonmuscular use of BTX-A. Bushara further showed the efficacy of botulinum toxin in treating hyperhidrosis (excessive sweating). BTX-A was later approved for the treatment of excessive underarm sweating. This is technically known as severe primary axillary hyperhidrosis – excessive underarm sweating with an unknown cause which cannot be managed by topical agents (see focal hyperhidrosis).
Practical surgical procedures used for treating synkinesis are neurolysis and selective myectomy. Neurolysis has been shown to be effective in relieving synkinesis but only temporarily and unfortunately symptoms return much worse than originally. Selective myectomy, in which a synkinetic muscle is selectively resected, is a much more effective technique that can provide permanent relief and results in a low recurrence rate; unfortunately, it also has many post-operative complications that can accompany including edema, hematoma, and ecchymosis. Therefore, surgical procedures are very minimally used by doctors and are used only as last-resort options for patients who do not respond well to non-invasive treatments.
In many cases recovery happens spontaneously and no treatment is needed. This spontaneous recovery can occur because distance between the injury location and the deltoid muscle is small. Spontaneous recovery may take as long as 12 months.
In order to combat pain and inflammation of nerves, medication may be prescribed.
Surgery is an option, but it has mixed results within the literature and is usually avoided because only about half of people who undergo surgery see any positive results from it. Some suggest that surgical exploration should be considered if no recovery occurs after 3 to 6 months. Some surgical options include nerve grafting, neurolysis, or nerve reconstruction. Surgery results are typically better for younger patients (under 25) and for nerve grafts less than six centimeters.
For some, recovery does not occur and surgery is not possible. In these cases, most patients’ surrounding muscles can compensate, allowing them to gain a satisfactory range of motion back. Physical therapy or Occupational therapy will help retrain and gain muscle tone back.
Medications that impede the release of excitatory neurotransmitters have been used to control or prevent spasms. Treatment with intrathecal baclofen, a gamma-aminobutyric acid (GABA) agonist, decreases muscle tone and has been shown to decrease the frequency of muscle spasms in ADCP patients. Tetrabenazine, a drug commonly used in the treatment of Huntington's disease, has been shown to be effective treating chorea.
This is most commonly achieved through the use of fresnel prisms. These slim flexible plastic prisms can be attached to the patient's glasses, or to plano glasses if the patient has no refractive error, and serve to compensate for the inward misalignment of the affected eye. Unfortunately, the prism only correct for a fixed degree of misalignment and, because the affected individual's degree of misalignment will vary depending upon their direction of gaze, they may still experience diplopia when looking to the affected side. The prisms are available in different strengths and the most appropriate one can be selected for each patient. However, in patients with large deviations, the thickness of the prism required may reduce vision so much that binocularity is not achievable. In such cases it may be more appropriate simply to occlude one eye temporarily. Occlusion would never be used in infants though both because of the risk of inducing stimulus deprivation amblyopia and because they do not experience diplopia.
Other management options at this initial stage include the use of botulinum toxin, which is injected into the ipsilateral medial rectus (botulinum toxin therapy of strabismus). The use of BT serves a number of purposes. Firstly, it helps to prevent the contracture of the medial rectus which might result from its acting unopposed for a long period. Secondly, by reducing the size of the deviation temporarily it might allow prismatic correction to be used where this was not previously possible, and, thirdly, by removing the pull of the medial rectus it may serve to reveal whether the palsy is partial or complete by allowing any residual movement capability of the lateral rectus to operate. Thus, the toxin works both therapeutically, by helping to reduce symptoms and enhancing the prospects for fuller ocular movements post-operatively, and diagnostically, by helping to determine the type of operation most appropriate for each patient.
Where full recovery has not occurred after the 9 to 12 month 'watch and wait' period, management will take either a 'conservative' or a surgical course.
Botox (botulinum toxin) is a new and versatile tool for the treatment of synkinesis. Initially used for reducing hyperkinesis after facial palsy, Botox was later attempted on patients with post-facial palsy synkinesis to reduce unwanted movements. The effects of Botox have shown to be remarkable, with synkinetic symptoms disappearing within 2 or 3 days. The most common treatment targets are the orbicularis oculi, depressor anguli oris (DAO), mentalis, platysma and the contralateral depressor labii inferioris muscles. Due to the short span of Botox effects though, patients must come back to the doctor for re-injection approximately every 3 months. More notable is that in a majority of patients, various synkinetic movements completely disappeared after 2-3 sessions of trimonthly Botox injections.
A more specific synkinesis, crocodile tears syndrome (hyperlacrimation upon eating), has been shown to respond exceedingly well to Botox injection. Botox is injected directly into the lacrimal gland and has shown to reduce hyperlacrimation within 24–48 hours. The procedure was shown to be simple and safe with very little chance of side-effects (although on rare occasions ptosis can occur due to botulinum toxin diffusion). Furthermore, reduction in hyper-lacrimation was shown to last longer than the expected 3 months (about 12 months).
Since Botox can mimic facial paralysis, an optimized dose has been determined that reduces involuntary synkinesis of the muscle while not affecting muscle tone.
There is no current treatment, however management of hereditary neuropathy with liability to pressure palsy can be done via:
- Occupational therapist
- Ankle/foot orthosis
- Wrist splint (medicine)
- Avoid repetitive movements
Current forms of prevention are focused during pregnancy, while others are focused immediately after birth. Some methods that have been used include prolonging the pregnancy using interventions such as 17-alpha progesterone, limiting the number of gestations during pregnancy (for pregnancies induced by assistive reproductive technology), antenatal steroid for mothers likely to deliver prematurely, high caffeine for premature births with extremely low birth weights.
Physical therapy and Occupational Therapy are staple treatments of ADCP. Physical therapy is initiated soon after diagnosis and typically focuses on trunk strength and maintaining posture. Physical therapy helps to improve mobility, range of motion, functional ability, and quality of life. Specific exercises and activities prescribed by a therapist help to prevent muscles from deteriorating or becoming locked in position and help to improve coordination. Occupational therapy interventions for children with CP can include feeding, dressing, bathing, toileting, grooming, pencil grasp and handwriting skills, play, and use of adaptive equipment.
PBP is aggressive and relentless, and there were no treatments for the disease as of 2005. However, early detection of PBP is the optimal scenario in which doctors can map out a plan for management of the disease. This typically involves symptomatic treatments that are frequently used in many lower motor disorders.
There are several different modes of treatment for people with paralysis in their upper limbs. For example, behavioral and environmental treatments may include physiotherapy, occupational therapy, motor learning, strength training, and neurodevelopment treatment. Another treatment may be through the use of splints and casts. Electrophysical agents may be used such as neuromuscular electrical stimulation (NMES). Sometimes pharmacological treatments are necessary such as Botulinum toxin type A. On more severe cases surgery of the upper limbs may be required.
As of 2010, there was no cure for MMND. People with MMND are given supportive care to help them cope, which can include physical therapy, occupational therapy, counselling, and hearing aids.
CBPS is commonly treated with anticonvulsant therapy to reduce seizures. Therapies include anticonvulsant drugs, adrenocorticotropic hormone therapy, and surgical therapy, including focal corticectomy and callosotomy. Special education, speech therapy, and physical therapy are also used to help children with intellectual disability due to CBPS.
There is no treatment of conjugate gaze palsy itself, so the disease or condition causing the gaze palsy must be treated, likely by surgery. As stated in the causes section, the gaze palsy may be due to a lesion caused by stroke or a condition. Some of the conditions such as Progressive supra nuclear palsy are not curable, and treatment only includes therapy to regain some tasks, not including gaze control. Other conditions such as Niemann-Pick disease type C have limited drug therapeutic options. Stroke victims with conjugate gaze palsies may be treated with intravenous therapy if the patent presents early enough, or with a surgical procedure for other cases.
Since pseudobulbar palsy is a syndrome associated with other diseases, treating the underlying disease may eventually reduce the symptoms of pseudobulbar palsy.
Possible pharmacological interventions for pseudobulbar affect include the tricyclic antidepressants, serotonin reuptake inhibitors, and a novel approach utilizing dextromethorphan and quinidine sulfate. Nuedexta is an FDA approved medication for pseudobulbar affect. Dextromethorphan, an N-methyl-D-aspartate receptor antagonist, inhibits glutamatergic transmission in the regions of the brainstem and cerebellum, which are hypothesized to be involved in pseudobulbar symptoms, and acts as a sigma ligand, binding to the sigma-1 receptors that mediate the emotional motor expression.
Over time, the approach to CP management has shifted away from narrow attempts to fix individual physical problems such as spasticity in a particular limb to making such treatments part of a larger goal of maximizing the person's independence and community engagement. Much of childhood therapy is aimed at improving gait and walking. Approximately 60% of people with CP are able to walk independently or with aids at adulthood. However, the evidence base for the effectiveness of intervention programs reflecting the philosophy of independence has not yet caught up: effective interventions for body structures and functions have a strong evidence base, but evidence is lacking for effective interventions targeted toward participation, environment, or personal factors. There is also no good evidence to show that an intervention that is effective at the body-specific level will result in an improvement at the activity level, or vice versa. Although such cross-over benefit might happen, not enough high-quality studies have been done to demonstrate it.
Because cerebral palsy has "varying severity and complexity" across the lifespan, it can be considered a collection of conditions for management purposes. A multidisciplinary approach for cerebral palsy management is recommended, focusing on "maximising individual function, choice and independence" in line with the International Classification of Functioning, Disability and Health's goals. The team may include a paediatrician, a health visitor, a social worker, a physiotherapist, an orthotist, a speech and language therapist, an occupational therapist, a teacher specialising in helping children with visual impairment, an educational psychologist, an orthopaedic surgeon, a neurologist and a neurosurgeon.
Various forms of therapy are available to people living with cerebral palsy as well as caregivers and parents. Treatment may include one or more of the following: physical therapy; occupational therapy; speech therapy; water therapy; drugs to control seizures, alleviate pain, or relax muscle spasms (e.g. benzodiazepines); surgery to correct anatomical abnormalities or release tight muscles; braces and other orthotic devices; rolling walkers; and communication aids such as computers with attached voice synthesisers. A Cochrane review published in 2004 found a trend toward benefit of speech and language therapy for children with cerebral palsy, but noted the need for high quality research. A 2013 systematic review found that many of the therapies used to treat CP have no good evidence base; the treatments with the best evidence are medications (anticonvulsants, botulinum toxin, bisphosphonates, diazepam), therapy (bimanual training, casting, constraint-induced movement therapy, context-focused therapy, fitness training, goal-directed training, hip surveillance, home programmes, occupational therapy after botulinum toxin, pressure care) and surgery (selective dorsal rhizotomy).
Congenital fourth cranial nerve palsy can be treated with strabismus surgery, where muscle attachment sites on the globe are modified to realign the eyes. Some eye doctors prefer conservative or no management of congenital fourth nerve palsy.
Other eye doctors recommend surgery early in a patient's life to prevent the compensatory torticollis and facial asymmetry that develop with age.
Prism lenses set to make minor optical changes in the vertical alignment may be prescribed instead of or after surgery to fine-tune the correction. Prism lenses do not address torsional misalignment and this may limit their use in certain cases. An additional consideration of prism lenses is that they must be worn at all times. Prism lenses reduce vertical fusional demands by allowing the eyes to rest in their vertically misaligned state. When they are removed the patient may experience vertical diplopia they find hard to resolve due to the rested state of their eyes.
Cases of congenital fourth nerve palsy vary in magnitude and way they affect the motion of the superior oblique muscle. Therefore different surgeries are available dependent upon the type of misalignment. Sometimes surgery on more than one eye muscle is required. In some simpler, unilateral cases a single surgery may suffice. In these cases the main problem is that the inferior oblique muscle of the same eye acts unopposed by the weakened superior oblique muscle, pulling the eye up. An example of a safe and effective procedure is a disinsertion of the inferior oblique muscle to allow it to reattach itself further down the globe of the eye. This acts to 'weaken' its action and allow the eye to move back into a more neutral alignment.
In all cases of congenital fourth nerve palsy, it is important to see an experienced strabismologist about management/treatment options. A strabismologist is an ophthalmologist (eye doctor) specialising in eye movement disorders.
There is no known cure to DSMA1, and care is primarily supportive. Patients require respiratory support which may include non-invasive ventilation or tracheal intubation. The child may also undergo additional immunisations and offered antibiotics to prevent respiratory infections. Maintaining a healthy weight is also important. Patients are at risk of undernutrition and weight loss because of the increased energy spent for breathing. Physical and occupational therapy for the child can be very effective in maintaining muscle strength.
There is no published practice standard for the care in DSMA1, even though the Spinal Muscular Atrophy Standard of Care Committee has been trying to come to a consensus on the care standards for DSMA1 patients. The discrepancies in the practitioners’ knowledge, family resources, and differences in patient’s culture and/or residency have played a part in the outcome of the patient.
There is currently no defined treatment to ameliorate the muscle weakness of CPEO. Treatments used to treat other pathologies causing ophthalmoplegia has not been shown to be effective.
Experimental treatment with tetracycline has been used to improve ocular motility in one patient. Coenzyme Q has also been used to treat this condition. However, most neuro-ophthalmologists do not ascribe to any treatment.
Ptosis associated with CPEO may be corrected with surgery to raise the lids, however due to weakness of the orbicularis oculi muscles, care must be taken not to raise the lids in excess causing an inability to close the lids. This results in an exposure keratopathy. Therefore, rarely should lid surgery be performed and only by a neuro-ophthalmologist familiar with the disease.
The most common strabismus finding is large angle exotropia which can be treated by maximal bilateral eye surgery, but due to the progressive nature of the disease, strabismus may recur. Those that have diplopia as a result of asymmetric ophthalmoplegia may be corrected with prisms or with surgery to create a better alignment of the eyes.