Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There are many classes of antiarrhythmic medications, with different mechanisms of action and many different individual drugs within these classes. Although the goal of drug therapy is to prevent arrhythmia, nearly every anti arrhythmic drug has the potential to act as a pro-arrhythmic, and so must be carefully selected and used under medical supervision.
A number of other drugs can be useful in cardiac arrhythmias.
Several groups of drugs slow conduction through the heart, without actually preventing an arrhythmia. These drugs can be used to "rate control" a fast rhythm and make it physically tolerable for the patient.
Some arrhythmias promote blood clotting within the heart, and increase risk of embolus and stroke. Anticoagulant medications such as warfarin and heparins, and anti-platelet drugs such as aspirin can reduce the risk of clotting.
For those who are stable with a monomorphic waveform the medications procainamide or sotalol may be used and are better than lidocaine. Evidence does not show that amiodarone is better than procainamide.
As a low magnesium level in the blood is a common cause of VT, magnesium sulfate can be given for torsades de pointes or if a low blood magnesium level is found/suspected.
Long-term anti-arrhythmic therapy may be indicated to prevent recurrence of VT. Beta-blockers and a number of class III anti-arrhythmics are commonly used, such as the beta-blockers carvedilol, metoprolol, and bisoprolol, and the Potassium-Channel-Blockers amiodarone, dronedarone,bretylium, sotalol, ibutilide, and dofetilide. Angiotensin-converting-eynsyme (ACE) inhibitors and aldostrone antatagonists are also sometimes used in this setting.
A person with pulseless VT is treated the same as ventricular fibrillation with high-energy (360J with a monophasic defibrillator, or 200J with a biphasic defibrillator) unsynchronised cardioversion (defibrillation). They will be unconscious.
The shock may be delivered to the outside of the chest using the two pads of an external defibrillator, or internally to the heart by an implantable cardioverter-defibrillator (ICD) if one has previously been inserted.
An ICD may also be set to attempt to overdrive pace the ventricle. Pacing the ventricle at a rate faster than the underlying tachycardia can sometimes be effective in terminating the rhythm. If this fails after a short trial, the ICD will usually stop pacing, charge up and deliver a defibrillation grade shock.
In general, atrial flutter should be managed the same as atrial fibrillation. Because both rhythms can lead to the formation of a blood clot in the atrium, individuals with atrial flutter usually require some form of anticoagulation or antiplatelet agent. Both rhythms can be associated with dangerously fast heart rates and thus require medication to control the heart rate (such as beta blockers or calcium channel blockers) and/or rhythm control with class III antiarrhythmics (such as ibutilide or dofetilide). However, atrial flutter is more resistant to correction with such medications than atrial fibrillation. For example, although the class III antiarrhythmic agent ibutilide is an effective treatment for atrial flutter, rates of recurrence after treatment are quite high (70-90%). Additionally, there are some specific considerations particular to treatment of atrial flutter.
Once an acute arrhythmia has been terminated, ongoing treatment may be indicated to prevent recurrence. However, those that have an isolated episode, or infrequent and minimally symptomatic episodes, usually do not warrant any treatment other than observation.
In general, patients with more frequent or disabling symptoms warrant some form of prevention. A variety of drugs including simple AV nodal blocking agents such as beta-blockers and verapamil, as well as anti-arrhythmics may be used, usually with good effect, although the risks of these therapies need to be weighed against potential benefits.
Radiofrequency ablation has revolutionized the treatment of tachycardia caused by a re-entrant pathway. This is a low-risk procedure that uses a catheter inside the heart to deliver radio frequency energy to locate and destroy the abnormal electrical pathways. Ablation has been shown to be highly effective: around 90% in the case of AVNRT. Similar high rates of success are achieved with AVRT and typical atrial flutter.
Cryoablation is a newer treatment for SVT involving the AV node directly. SVT involving the AV node is often a contraindication for using radiofrequency ablation due to the small (1%) incidence of injuring the AV node, requiring a permanent pacemaker. Cryoablation uses a catheter supercooled by nitrous oxide gas freezing the tissue to −10 °C. This provides the same result as radiofrequency ablation but does not carry the same risk. If you freeze the tissue and then realize you are in a dangerous spot, you can halt freezing the tissue and allow the tissue to spontaneously rewarm and the tissue is the same as if you never touched it. If after freezing the tissue to −10 °C you get the desired result, then you freeze the tissue down to a temperature of −73 °C and you permanently ablate the tissue.
This therapy has further improved the treatment options for people with AVNRT (and other SVTs with pathways close to the AV node), widening the application of curative ablation to young patients with relatively mild but still troublesome symptoms who would not have accepted the risk of requiring a pacemaker.
Isolated PVCs with benign characteristics require no treatment.
In healthy individuals, PVCs can often be resolved by restoring the balance of magnesium, calcium and potassium within the body. In one randomized controlled trial with 60 people those with 260 mg magnesium daily supplementation (in magnesium pidolate) had an average reduction of PVC by 77%. In another trial with 232 persons with frequent ventricular arrhythmias (> 720 PVC/24 h) those with 6 mmol of magnesium (146 mg Mg)/12 mmol of potassium-DL-hydrogenaspartate daily supplementation had median reduction of PVCs by 17%.
The most effective treatment is the elimination of triggers (particularly stopping the use of substances such as caffeine and certain drugs, like tobacco).
- Medications
- Antiarrhythmics: these agents alter the electrophysiologic mechanisms responsible for PVCs. In CAST study of survivors of myocardial infarction encainide and flecainide, although could suppress PVC, they increased death risk; moricizine increased death rate when used with diuretics and decreased it when used alone.
- Beta blockers
- Calcium channel blockers
- Electrolytes replacement
- Magnesium supplements (e.g. magnesium citrate, orotate, Maalox, etc.)
- Potassium supplements (e.g. chloride potassium with citrate ion)
- Radiofrequency catheter ablation treatment. It is advised for people with ventricular dysfunction and frequent arrhythmias or very frequent PVC (>20% in 24 h) and normal ventricular function. This procedure is a way to destroy the area of the heart tissue that is causing the irregular contractions characteristic of PVCs using radio frequency energy.
- Implantable cardioverter-defibrillator
- Lifestyle modification
- Frequently stressed individuals should consider therapy, or joining a support group.
- Heart attacks can increase the likelihood of having PVCs.
In the setting of existing heart disease, however, PVCs must be watched carefully, as they may cause a form of ventricular tachycardia (rapid heartbeat).
The American College of Cardiology and the American Heart Association recommend evaluation for coronary artery disease (CAD) in patients who have frequent PVCs and cardiac risk factors, such as hypertension and smoking (SOR C). Evaluation for CAD may include stress testing, echocardiography, and ambulatory rhythm monitoring.
Most SVTs are unpleasant rather than life-threatening, although very fast heart rates can be problematic for those with underlying ischemic heart disease or the elderly. Episodes require treatment when they occur, but interval therapy may also be used to prevent or reduce recurrence. While some treatment modalities can be applied to all SVTs, there are specific therapies available to treat some sub-types. Effective treatment consequently requires knowledge of how and where the arrhythmia is initiated and its mode of spread.
SVTs can be classified by whether the AV node is involved in maintaining the rhythm. If so, slowing conduction through the AV node will terminate it. If not, AV nodal blocking maneuvers will not work, although transient AV block is still useful as it may unmask an underlying abnormal rhythm.
Adenosine, an ultra-short-acting AV nodal blocking agent, is indicated if vagal maneuvers are not effective. If unsuccessful or the PSVT recurs diltiazem or verapamil are recommended. Adenosine may be safely used during pregnancy.
SVT that does not involve the AV node may respond to other anti-arrhythmic drugs such as sotalol or amiodarone.
Atrial flutter is considerably more sensitive to electrical direct current cardioversion than atrial fibrillation, with a shock of only (20 to 50) J commonly being enough to cause a return to a normal heart rhythm (sinus rhythm). Exact placement of the pads does not appear important.
If the person is hemodynamically unstable or other treatments have not been effective, synchronized electrical cardioversion may be used. In children this is often done with a dose of 0.5 to 1 J/Kg.
People with atrial fibrillation and rapid ventricular response are often treated with amiodarone or procainamide to stabilize their heart rate. Procainamide and cardioversion are now accepted treatments for conversion of tachycardia found with WPW. Amiodarone was previously thought to be safe in atrial fibrillation with WPW, but after several cases of ventricular fibrillation, it is no longer recommended in this clinical scenario.
AV node blockers should be avoided in atrial fibrillation and atrial flutter with WPW or history of it; this includes adenosine, diltiazem, verapamil, other calcium channel blockers, and beta blockers. They can exacerbate the syndrome by blocking the heart's normal electrical pathway (therefore favoring 1:1 atrial to ventricle conduction through the pre-excitation pathway, potentially leading to unstable ventricular arrhythmias).
Premature atrial contractions are often benign, requiring no treatment. Occasionally, the patient having the PAC will find these symptoms bothersome, in which case the doctor may treat the PACs. Sometimes the PACs can indicate heart disease or an increased risk for other cardiac arrhythmias. In this case the underlying cause is treated. Often a beta blocker will be prescribed for symptomatic PACs.
People with WPW who are experiencing tachydysrhythmias may require synchronized electrical cardioversion if they are demonstrating severe signs or symptoms (for example, low blood pressure or lethargy with altered mental status). If they are relatively stable, medication may be used.
Treatment is aimed at slowing the rate by correcting acidosis, correcting electrolytes (especially magnesium and calcium), cooling the patient, and antiarrhythmic medications. Occasionally pacing of the atrium at a rate higher than the JET may allow improved cardiac function by allowing atrial and ventricular synchrony.
A 1994 study at the Adolph Basser Institute of Cardiology found that amiodarone, an antiarrhythmic agent, could be used safely and relatively effectively.
JET occurring after the first six months of life is somewhat more variable, but may still be difficult to control. Treatment of non-post-operative JET is typically with antiarrhythmic medications or a cardiac catheterization with ablation (removal of affected tissue). A cardiac catheterization may be performed to isolate and ablate (burn or freeze) the source of the arrhythmia. This can be curative in the majority of cases. The use of radiofrequency energy is infrequently associated with damage to the normal conduction due to the close proximity to the AV node, the normal conduction tissue. The use of cryotherapy (cold energy) appears to be somewhat safer, and can also be effective for the treatment of JET.
In people without underlying heart disease and who do not have any symptoms, bigeminy in itself does not require any treatment. If it does become symptomatic, beta-blockers can be used to try and suppress ventricular ectopy. Class I and III agents are generally avoided as they can provoke more serious arrhythmias.
Management of multifocal atrial tachycardia consists mainly of the treatment of the underlying cause, but if clinically judged necessary, the rate may in some cases be reduced by administering the calcium channel blocker verapamil or the beta blocker metoprolol.
Administration of oxygen may play a role in the treatment of some patients.
Not required for physiologic sinus tachycardia. Underlying causes are treated if present.
Acute myocardial infarction. Sinus tachycardia can present in more than a third of the patients with AMI but this usually decreases over time. Patients with sustained sinus tachycardia reflects a larger infarct that are more anterior with prominent left ventricular dysfunction, associated with high mortality and morbidity. Tachycardia in the presence of AMI can reduce coronary blood flow and increase myocardial oxygen demand, aggravating the situation. Beta blockers can be used to slow the rate, but most patients are usually already treated with beta blockers as a routine regimen for AMI.
Practically, many studies showed that there is no need for any treatment.
IST and POTS. Beta blockers are useful if the cause is sympathetic overactivity. If the cause is due to decreased vagal activity, it is usually hard to treat and one may consider radiofrequency catheter ablation.
Ouabain infusion decreases ventricular escape time and increases ventricular escape rhythm. However, a high dose of ouabain can lead to ventricular tachycardia.
In those that are unstable with a narrow complex tachycardia, intravenous adenosine may be attempted. In all others immediate cardioversion is recommended.
Third degree AV block can be treated with Cilostazol which acts to increase Ventricular escape rate
Early detection and treatment are associated with higher rates of recovery and decreased morbidity and mortality.
Treatment for PPCM is similar to treatment for congestive heart failure. Conventional heart failure treatment includes the use of diuretics, beta blockers (B-B), and angiotensin-converting enzyme inhibitors (ACE-I) after delivery. Diuretics, preferably furosemide, help the body to get rid of excess water weight and also lower blood pressure. ACE-I and B-B improve blood circulation and contribute to the reversal of the immune system dysfunction associated with PPCM. If ACE-I is not well tolerated by the patient, it can be replaced by angiotensin receptor blockers (ARB). Hydralazine with nitrates may replace ACE-I in breastfeeding mothers or before delivery; however, evidence suggests that this course of treatment may not be as effective as ACE-I but beneficial when necessary.
If EF is less than 35%, anticoagulation is indicated, as there is a greater risk of developing left ventricular thrombi (blood clots). Sometimes implantation of a left ventricular assist device (LVAD) or even heart transplant also becomes necessary.
It is important that the patient receives regular follow-up care including frequent echocardiograms to monitor improvement or the lack thereof, particularly after changes of medical treatment regimes.
Patients who do not respond to initial treatment, defined as left ventricular EF remaining below 20% at two months or below 40% at three months with conventional treatment may merit further investigation, including cardiac magnetic resonance imaging (MRI), cardiac catheterization, and endomyocardial biopsy for special staining and for viral polymerase chain reaction (PCR) analysis. Antiviral therapy, immunoabsorption, intravenous gamma globulin, or other immunomodulation therapy may then be considered accordingly, but following a controlled research-type protocol.
Since no one knows for sure exactly when to discontinue treatment, even when recovery occurs quickly, it is still recommended that both ACE-I and B-B be continued for at least one year after diagnosis.
AV reentrant tachycardia (AVRT) requires an accessory pathway for its maintenance. AVRT may involve orthodromic conduction (where the impulse travels down the AV node to the ventricles and back up to the atria through the accessory pathway) or antidromic conduction (which the impulse travels down the accessory pathway and back up to the atria through the AV node). Orthodromic conduction usually results in a narrow complex tachycardia, and antidromic conduction usually results in a wide complex tachycardia that often mimics ventricular tachycardia. Most antiarrhythmics are contraindicated in the emergency treatment of AVRT, because they may paradoxically increase conduction across the accessory pathway.
In otherwise healthy patients, occasional premature atrial contractions are a common and normal finding and do not indicate any particular health risk. Rarely, in patients with other underlying structural heart problems, PACs can trigger a more serious arrhythmia such as atrial flutter or atrial fibrillation. In otherwise healthy people, PACs usually disappear with adolescence.
The most recent studies indicate that with newer conventional heart failure treatment consisting of diuretics, ACE inhibitors and beta blockers, the survival rate is very high at 98% or better, and almost all PPCM patients improve with treatment. In the United States, over 50% of PPCM patients experience complete recovery of heart function (EF 55% or greater). Almost all recovered patients are eventually able to discontinue medications with no resulting relapse and have normal life expectancy.
It is a misconception that hope for recovery depends upon improvement or recovery within the first six to 12 months of diagnosis. Many women continue to improve or recover even years after diagnosis with continued medicinal treatment. Once fully recovered, if there is no subsequent pregnancy, the possibility of relapse or recurrence of heart failure is minimal.
Subsequent pregnancy should be avoided when left ventricular function has not recovered and the EF is lower than 55%. However, many women who have fully recovered from PPCM have gone on to have successful subsequent pregnancies. A significant study reports that the risk for recurrence of heart failure in recovered PPCM patients as a result of subsequent pregnancy is approximately 21% or better. The chance of relapse may be even smaller for those with normal contractile reserve as demonstrated by stress echocardiography. In any subsequent pregnancy, careful monitoring is necessary. Where relapse occurs, conventional treatment should be resumed, including hydralazine with nitrates plus beta-blockers during pregnancy, or ACE-inhibitors plus beta-blockers following pregnancy.