Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
MASC is currently treated as a low-grade (i.e. Grade 1) carcinoma with an overall favorable prognosis. These cases are treated by complete surgical excision. However, the tumor does have the potential to recur locally and/or spread beyond surgically dissectible margins as well as metastasize to regional lymph nodes and distant tissues, particularly in tumors with histological features indicating a high cell growth rate potential. One study found lymph node metastasis in 5 of 34 MASC patients at initial surgery for the disease; these cases, when evidencing no further spread of disease, may be treated with radiation therapy. The treatment of cases with disease spreading beyond regional lymph nodes has been variable, ranging from simple excision to radical resections accompanied by adjuvant radiotherapy and/or chemotherapy, depending on the location of disease. Mean disease-free survival for MASC patients has been reported to be 92 months in one study.
The tyrosine kinase activity of NTRK3 as well as the ETV6-NTRK3 protein is inhibited by certain tyrosine kinase inhibitory drugs such as Entrectinib and LOXO-101; this offers a potential medical intervention method using these drugs to treat aggressive MASC disease. Indeed, one patient with extensive head and neck MASC disease obtained an 89% fall in tumor size when treated with entrectinib. This suppression lasted only 7 months due to the tumor's acquirement of a mutation in the "ETV6-NTRK3" gene. The newly mutated gene encoded an entrectinib-reisistant "ETV6-NTRK3" protein. Treatment of aggressive forms of MASC with NTRK3-inhibiting tyrosine kinase inhibiting drugs, perhaps with switching to another type of tyrosine kinase inhibitor drug if the tumor acquires resistance to the initial drug, is under study.STARTRK-2
As the condition is quite rare, opinions among experts about how to treat OKCs differ.
Treatment options:
- Wide (local) surgical excision.
- Marsupialization - the surgical opening of the (OKC) cavity and a creation of a marsupial-like pouch, so that the cavity is in contact with the outside for an extended period, e.g. three months.
- Curettage (simple excision & scrape-out of cavity).
- Peripheral ostectomy after curettage and/or enucleation.
- Simple excision.
- Carnoy's solution - usually used in conjunction with excision.
- Enucleation and cryotherapy
Thyroidectomy and neck dissection show good results in early stages of SCTC. However, due to highly aggressive phenotype, surgical treatment is not always possible. The SCTC is a radioiodine-refractory tumor. Radiotherapy might be effective in certain cases, resulting in relatively better survival rate and quality of life. Vincristine, Adriamycin, and bleomycin are used for adjuvant chemotherapy, but their effects are not good enough according to published series.
Treatment may include the following:
- Surgery with or without radiation
- Radiotherapy
Fast neutron therapy has been used successfully to treat salivary gland tumors, and has shown to be significantly more effective than photons in studies treating unresectable salivary gland tumors.
- Chemotherapy
These lesions rarely require surgery unless they are symptomatic or the diagnosis is in question. Since these lesions do not have malignant potential, long-term observation is unnecessary. Surgery can include the removal of the head of the pancreas (a pancreaticoduodenectomy), removal of the body and tail of the pancreas (a distal pancreatectomy), or rarely removal of the entire pancreas (a total pancreatectomy). In selected cases the surgery can be performed using minimally invasive techniques such as laparoscopy.
Treatment:wide excision taking 8mm normal tissue as this is locally malignant. For recurrence radiotherapy is given
Based on a survey of >800, surgical removal of the entire involved kidney plus the peri-renal fat appeared curative for the majority of all types of mesoblastic nephroma; the patient overall survival rate was 94%. Of the 4% of non-survivors, half were due to surgical or chemotherapeutic treatments. Another 4% of these patients suffered relapses, primarily in the local area of surgery rare cases of relapse due to lung or bone metastasis.. About 60% of these recurrent cases had a complete remission following further treatment. Recurrent disease was treated with a second surgery, radiation, and/or chemotherapy that often vincristine and actinomycin treatment. Removal of the entire afflicted kidney plus the peri-renal fat appears critical to avoiding local recurrences. In general, patients who were older than 3 months of age at diagnosis or had the cellular form of the disease, stage III disease, or involvement of renal lymph nodes had a higher recurrence rate. Among patients with these risk factors, only those with lymph node involvement are recommended for further therapy.
It has been suggested that mesoblastic nephroma patients with lymph node involvement or recurrent disease might benefit by adding the ALK inhibitor, crizotinib, or a tyrosine kinase inhibitor, either larotrectinib or entrectinib, to surgical, radiation, and/or chemotherapy treatment regimens. These drugs inhibit NTRK3's tyrosine kinase activity. Crizotinib has proven useful in treating certain cases of acute lymphoblastic leukemia that are associated with the "ETV6-NTRK3" fusion gene while larotrectinib and entrectinib have been useful in treating various cancers (e.g. a metastatic sarcoma, papillary thyroid cancer, non-small-cell lung carcinoma, gastrointestinal stromal tumor, mammary analog secretory carcinoma, and colorectal cancer) that are driven by mutated, overly active tyrosine kinases. Relevant to this issue, a 16-month-old girl with infantile fibrosarcoma harboring the "ETV6–NTRK3" fusion gene was successfully trated with larotrectinib. The success of these drugs, howwever, will likely depend on the relative malignancy-promoting roles of ETV6-NTRK3 protein's tyrosine kinase activity, the lose of ETV6-related transcription activity accompanying formation of ETV6-NTRK3 protein, and the various trisomy chromosomes that populate mesoblastic nephroma.
There are different opinions on the best treatment of DCIS. Surgical removal, with or without additional radiation therapy or tamoxifen, is the recommended treatment for DCIS by the National Cancer Institute. Surgery may be either a breast-conserving lumpectomy or a mastectomy (complete or partial removal of the affected breast). If a lumpectomy is used it is often combined with radiation therapy. Tamoxifen may be used as hormonal therapy if the cells show estrogen receptor positivity. Chemotherapy is not needed for DCIS since the disease is noninvasive.
While surgery reduces the risk of subsequent cancer, many people never develop cancer even without treatment and there associated side effects. There is no evidence comparing surgery with watchful waiting and some feel watchful waiting may be a reasonable option in certain cases.
Use of radiation therapy after lumpectomy provides equivalent survival rates to mastectomy, although there is a slightly higher risk of recurrent disease in the same breast in the form of further DCIS or invasive breast cancer. Systematic reviews (including a Cochrane review) indicate that the addition of radiation therapy to lumpectomy reduces recurrence of DCIS or later onset of invasive breast cancer in comparison with breast-conserving surgery alone, without affecting mortality. The Cochrane review did not find any evidence that the radiation therapy had any long-term toxic effects. While the authors caution that longer follow-up will be required before a definitive conclusion can be reached regarding long-term toxicity, they point out that ongoing technical improvements should further restrict radiation exposure in healthy tissues. They do recommend that comprehensive information on potential side effects is given to women who receive this treatment. The addition of radiation therapy to lumpectomy appears to reduce the risk of local recurrence to approximately 12%, of which approximately half will be DCIS and half will be invasive breast cancer; the risk of recurrence is 1% for women undergoing mastectomy.
The treatment of choice for main-duct IPMNs is resection due to approximately 50% chance of malignancy. Side-branch IPMNs are occasionally monitored with regular CT or MRIs, but most are eventually resected, with a 30% rate of malignancy in these resected tumors. Survival 5 years after resection of an IPMN without malignancy is approximately 80%, 85% with malignancy but no lymph node spread and 0% with malignancy spreading to lymph nodes. Surgery can include the removal of the head of the pancreas (a pancreaticoduodenectomy), removal of the body and tail of the pancreas (a distal pancreatectomy), or rarely removal of the entire pancreas (a total pancreatectomy). In selected cases the surgery can be performed using minimally invasive techniques such as laparoscopy or robotic surgery. A study using Surveillance, Epidemiology, and End Result Registry (SEER) data suggested that increased lymph node counts harvested during the surgery were associated with better survival in invasive IPMN patients.
Children with cerebellar pilocytic astrocytoma may experience side effects related to the tumor itself depending on the location and related to the treatment. Strabismus.
- Symptoms related to increased pressure in the brain often disappear after surgical removal of the tumor.
- Effects on coordination and balance improved and might progressively (to completely) disappear as recovery progresses.
- Steroid-treatment is often used to control tissue swelling that may occur pre- and post-operatively.
- Children Diagnosed can also suffer long term side effects due to the type of treatment they may receive.
The most common form of treatment is having the tumor surgically removed however total resection is often not possible. The location could prohibit access to the neoplasm and lead to incomplete or no resection at all. Removal of the tumor will generally allow functional survival for many years. In particular for pilocytic astrocytomas (that are commonly indolent bodies that may permit normal neurologic function) surgeons may decide to monitor the neoplasm's evolution and postpone surgical intervention for some time. However, left unattended these tumors may eventually undergo neoplastic transformation.
If surgery is not possible, recommendations such as chemotherapy or radiation be suggested however side effects from these treatments can be extensive and long term.
Surgical excision of the lesion is done, and depending upon the clinical circumstances, this may or may not involve removal of the involved tooth. With incomplete removal, recurrence is common; some surgeons advocate curettage after extraction of teeth to decrease the overall rate of recurrence.
Treatments of cancer in cats usually consists of diagnosis and observation of the tumor to determine its type and size, the development of a treatment plan, the associated goals on the part of the treatment methods, and the regular evaluation of the overall health of the pet.
ADH, if found on a surgical (excisional) biopsy of a mammographic abnormality, does not require any further treatment, only mammographic follow-up.
If ADH is found on a core (needle) biopsy (a procedure which generally does not excise a suspicious mammographic abnormality), a surgical biopsy, i.e. a breast lumpectomy, to completely excise the abnormality and exclude breast cancer is the typical recommendation.
Appearance and location of the tumor is enough to identify it as a mammary tumor. Biopsy will give type and invasiveness of the tumor. In addition, newer studies showed that certain gene expression patterns are associated with malignant behaviour of canine mammary tumors.
Surgical removal is the treatment of choice, but chest x-rays should be taken first to rule out metastasis. Removal should be with wide margins to prevent recurrence, taking the whole mammary gland if necessary. Because 40 to 50 percent of dog mammary tumors have estrogen receptors, spaying is recommended by many veterinarians. A recent study showed a better prognosis in dogs that are spayed at the time of surgery or that had been recently spayed. However, several other studies found no improvement of disease outcome when spaying was performed after the tumor had developed. Chemotherapy is rarely used.
There are no specific radiological tests for SCTC verification. However these tests might be useful for identification of tumor borders and in planning of surgery.
The primary and most desired course of action described in medical literature is surgical removal (resection) via craniotomy. Minimally invasive techniques are becoming the dominant trend in neurosurgical oncology. The prime remediating objective of surgery is to remove as many tumor cells as possible, with complete removal being the best outcome and cytoreduction ("debulking") of the tumor otherwise. In some cases access to the tumor is impossible and impedes or prohibits surgery.
Many meningiomas, with the exception of some tumors located at the skull base, can be successfully removed surgically.
Most pituitary adenomas can be removed surgically, often using a minimally invasive approach through the nasal cavity and skull base (trans-nasal, trans-sphenoidal approach). Large pituitary adenomas require a craniotomy (opening of the skull) for their removal. Radiotherapy, including stereotactic approaches, is reserved for inoperable cases.
Several current research studies aim to improve the surgical removal of brain tumors by labeling tumor cells with 5-aminolevulinic acid that causes them to fluoresce. Postoperative radiotherapy and chemotherapy are integral parts of the therapeutic standard for malignant tumors. Radiotherapy may also be administered in cases of "low-grade" gliomas when a significant tumor burden reduction could not be achieved surgically.
Multiple metastatic tumors are generally treated with radiotherapy and chemotherapy rather than surgery and the prognosis in such cases is determined by the primary tumor, and is generally poor.
The goal of radiation therapy is to kill tumor cells while leaving normal brain tissue unharmed. In standard external beam radiation therapy, multiple treatments of standard-dose "fractions" of radiation are applied to the brain. This process is repeated for a total of 10 to 30 treatments, depending on the type of tumor. This additional treatment provides some patients with improved outcomes and longer survival rates.
Radiosurgery is a treatment method that uses computerized calculations to focus radiation at the site of the tumor while minimizing the radiation dose to the surrounding brain. Radiosurgery may be an adjunct to other treatments, or it may represent the primary treatment technique for some tumors. Forms used include stereotactic radiosurgery, such as Gamma knife, Cyberknife or Novalis Tx radiosurgery.
Radiotherapy may be used following, or in some cases in place of, resection of the tumor. Forms of radiotherapy used for brain cancer include external beam radiation therapy, the most common, and brachytherapy and proton therapy, the last especially used for children.
Radiotherapy is the most common treatment for secondary brain tumors. The amount of radiotherapy depends on the size of the area of the brain affected by cancer. Conventional external beam "whole-brain radiotherapy treatment" (WBRT) or "whole-brain irradiation" may be suggested if there is a risk that other secondary tumors will develop in the future. Stereotactic radiotherapy is usually recommended in cases involving fewer than three small secondary brain tumors.
People who receive stereotactic radiosurgery (SRS) and whole-brain radiation therapy (WBRT) for the treatment of metastatic brain tumors have more than twice the risk of developing learning and memory problems than those treated with SRS alone.
The prevention of feline cancer mainly depends on the cat's diet and lifestyle, as well as an ability to detect early signs and symptoms of cancer prior to advancement to a further stage. If cancer is detected at an earlier stage, it has a higher chance of being treated, therefore lessening the chances of fatality. Taking domesticated cats for regular checkups to the veterinarian can help spot signs and symptoms of cancer early on and help maintain a healthy lifestyle. Further, due to advancements in research, prevention of certain types of feline illnesses remains possible. A widely known preventative of feline leukemia virus is the vaccine which was created in 1969. Subsequently, an immunofloures-cent antibody (IFA) test for the detection of FeLV in the blood of infected cats was formulated. The IFA test was mainly used to experiment the chances of felines being exposed to cancer. The results showed that 33% of cats who were exposed to FeLV related diseases were at a higher risk for acquiring it, while the cats that were left unexposed were left unaffected. FeLV is either spread through contagion or infection and once infected it is possible for cats to stay that way for the rest of their lives.
Interaction with other Cats
Interaction with other cats with strains or diseases related to FeLV can be a great risk factor for cats attaining FeLV themselves. Therefore, a main factor in prevention is keeping the affected cats in quarantine from the unaffected cats. Stray cats, or indoor/outdoor cats have been shown to be at a greater risk for acquiring FeLV, since they have a greater chance of interacting with other cats. Domesticated cats that are kept indoors are the least vulnerable to susceptible diseases.
Vaccines
Vaccines help the immune system fight off disease causing organisms, which is another key to prevention. However, vaccines can also cause tumors if not given properly. Vaccines should be given in the right rear leg to ease tumor removal process. Vaccines given in the neck or in between the shoulder blades are most likely to cause tumors and are difficult to remove, which can be fatal to cats. Reducing the number of vaccinations given to a cat may also decrease the risk for it developing a tumor.
Spaying and Neutering
Spaying and neutering holds many advantages to cats, including lowering the risk for developing cancer. Neutering male cats makes them less subjected to testicular cancer, FeLV, and FIV. Spaying female cats lowers the risk for mammary cancer, ovarian, or uterine cancer, as it prevents them from going into heat. Female cats should be spayed before their first heat, as each cycle of heat creates a greater risk for mammary cancer. Spaying a female cat requires the removal of the ovaries and uterus, which would eliminate their chances of developing cancer in these areas.
Exposure to Sun
The risk of skin cancer increases when a cat is exposed to direct sunlight for prolonged periods. White cats, or cats with white faces and ears, should not be allowed out on sunny days. Between the hours of 10:00 am to 4:00 pm, it is recommended to keep domesticated cats indoors, as the sun is at its highest peak between these times. Sun block is also available for cats, which can help prevent skin irritation, and a veterinarian should be contacted to find out which brands are appropriate and to use on cats.
Exposure to Secondhand Smoke
Cats living in a smoker’s household are three times more likely to develop lymphoma. Compared to living in a smoke-free environment, cats exposed to secondhand smoke also have a greater chance of developing squamous cell carcinoma or mouth cancer. Cancer is also developed mostly due to the cat's grooming habits. As cats lick themselves while they groom, they increase chances of taking in the toxic, cancer-causing carcinogens that gather on their fur, which are then exposed to their mucus membranes.
Lifestyle
Providing a cat with the healthiest lifestyle possible is the key to prevention. Decreasing the amount of toxins, including household cleaning products, providing fresh and whole foods, clean and purified water, and reducing the amount of indoor pollution can help cats live a longer and healthier life. To lessen susceptibility to diseases, domesticated cats should be kept inside the household for most of their lives to reduce the risk of interacting with other stray cats that could be infected with diseases.
Mammary myofibroblastoma, abbreviated MMFB, (aka "Wargotz tumor") is a rare, benign tumor of the breast.
Mammary analogue secretory carcinoma (MASC) (also termed MASC; the "SG" subscript indicates salivary gland)) is a salivary gland neoplasm that shares a genetic mutation with certain types of breast cancer. MASC was first described by Skálová et al. in 2010. The authors of this report found a chromosome translocation in certain salivary gland tumors that was identical to the (12;15)(p13;q25) fusion gene mutation found previously in secretory carcinoma, a subtype of invasive ductal carcinoma of the breast.
The condition is usually self-limiting, and thus not indicated for surgery.
The rate at which breast cancer (ductal carcinoma in situ "or" invasive mammary carcinoma (all breast cancer except DCIS and LCIS)) is found at the time of a surgical (excisional) biopsy, following the diagnosis of ADH on a core (needle) biopsy varies considerably from hospital-to-hospital (range 4-54%). In two large studies, the conversion of an ADH on core biopsy to breast cancer on surgical excision, known as "up-grading", is approximately 30%.
Ductal carcinoma is a type of tumor that primarily presents in the ducts of a gland.
Types include:
- Mammary
- Ductal carcinoma in situ
- Invasive ductal carcinoma
- Pancreatic ductal carcinoma