Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Surgical excision is performed when exostoses lead to growth disturbances or lead to disability. Knee osteotomies are associated with high incidence of peroneal nerve paralysis.
Surgery, physical therapy and pain management are currently the only options available to HME patients, but success varies from patient to patient and many struggle with pain, fatigue and mobility problems throughout their lives.
It is not uncommon for HME patients to undergo numerous surgical procedures throughout their lives to remove painful or deforming exostoses, correct limb length discrepancies or improve range of motion. Usually the treatment can be problematic. The osteochondromas can return in the same places and may be more painful.
Bone lesions in multiple myeloma patients may be treated with low-dose radiation therapy in order to reduce pain and other symptoms. Used in combination with immunochemotherapy, radiation therapy can be used to treat certain cancers when aimed at areas of bone lesion and softened bone.
Biophosphonates are drugs that are used to prevent bone mass loss and are often used to treat osteolytic lesions. Zoledronic acid (Reclast) is a specific drug given to cancer patients to prevent the worsening of bone lesions and has been reported to have anti-tumor effects as well. Zoledronic acid has been clinically tested in conjunction with calcium and vitamin D to encourage bone health. Denosumab, a monoclonal antibody treatment RANKl inhibitor that targets the osteocyte apoptosis regualtory RANKL gene, is also prescribed to prevent bone metastases and bone lesions. Most biophosphonates are co-prescribed with disease-specific treatments, such as chemotherapy or radiation for cancer patients.
Osteochondromas are benign lesions and do not affect life expectancy. Complete excision of osteochondroma is curative and the reoccurrences take place when the removal of tumor is incomplete. Multiple reoccurrences in a well-excised lesion indicate that it may be malignant. The risk of malignant transformation takes place in 1–5% of individuals. If any symptoms of cancerous tumor takes place, then the patient should be evaluated by a bone specialist. No treatment is necessary for Solitary osteochondromas that are asymptomatic. Treatments for solitary osteochondroma are careful observation over time and taking regular x-rays to monitor any changes in the tumor. If the lesion is causing pain with activity, nerve or vessel impingement, or if the bone growth has fully matured and the presence of a large cartilage cap is prominent, then it is advised that the tumor be surgically removed.
Osteochondromas have a low rate of malignancy (<1%) and resection of the tumor is suggested if symptoms such as pain, limitation of movement, or impingement on nerves or vessels occur. Resection of the tumor also takes place when the tumor increases in size and progresses towards malignancy. During surgical resection, the entire lesion along with the cartilaginous cap should be removed to minimize any chances of reoccurrences. Surgical treatment becomes the sole treatment of choice if common complications such as fractures, symptoms of peripheral nerves such as paresthesia, paraplegia, peroneal neuropathy, and upper limb neuropathy take place. A prophylactic resection is suggested if the lesion lies next to a vessel.
Depending on the size and location of the tumor, the time it takes to return to normal daily activities varies between individuals. Limitation on some activities is advised if pain or discomfort persists after surgical excision.
Normally, asymptomatic cases are not treated. Non-steroidal anti inflammatory drugs and surgery are two typical options for the rest.
Management entails careful examination and monitoring for malignant degenerations. Surgical interventions can correct or minimize deformities.
Surgical excision is common and is a very effective mode of treatment.
Generally buccal exostoses require no treatment. However, they may be easily traumatized causing ulceration, or may contribute to periodontal disease if they become too large, or can interfere with wearing a denture (false teeth). If they are creating problems, they are generally removed with a simple surgical procedure under local anesthetic.
Treatment is usually supportive treatment, that is, treatment to reduce any symptoms rather than to cure the condition.
- Enucleation of the odontogenic cysts can help, but new lesions, infections and jaw deformity are usually a result.
- The severity of the basal-cell carcinoma determines the prognosis for most patients. BCCs rarely cause gross disfigurement, disability or death .
- Genetic counseling
Treatment for NPS varies depending on the symptoms observed.
- Perform screening for renal disease and glaucoma, surgery, intensive physiotherapy, or genetic counseling.
- ACE inhibitors are taken to treat proteinuria and hypertension in NPS patients.
- Dialysis and renal transplant.
- Physical therapy, bracing and analgesics for joint pain.
- Other surgery treatments such as patella realignment, joint replacement, and the cutting away of the head of radius.
Hereditary multiple exostoses (HME or MHE), also known as diaphyseal aclasis, is a rare medical condition in which multiple bony spurs or lumps (also known as exostoses, or osteochondromas) develop on the bones of a child. HME is synonymous with multiple hereditary exostoses and multiple osteochondromatosis, which is the preferred term used by the World Health Organization.
Vasodilators improve the blood flow into the vessels of the hoof. Examples include isoxsuprine (currently unavailable in the UK) and pentoxifylline.
Anticoagulants can also improve blood flow. The use of warfarin has been proposed, but the extensive monitoring required makes it unsuitable in most cases.
Anti-inflammatory drugs are used to treat the pain, and can help the lameness resolve sometimes if shoeing and training changes are made. Include Nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, and other joint medications. The use of intramuscular glycosaminoglycans has been shown to decrease pain in horses with navicular disease, but this effect wanes after discontinuation of therapy. Oral glycosaminoglycans may have a similar effect.
Bisphosphonates can be useful in cases where bone remodeling is causing pain.
Gallium nitrate (GaN) has been hypothesized as a possible treatment for navicular disease, but its benefits have not been confirmed by formal clinical studies. One pilot study examined horses given gallium nitrate in their feed rations. While it was absorbed slowly, it did stay in the animals' system, providing a baseline dosage for future studies.
Fatigue is a common symptom and affects the daily life of individuals with MS. Changes in lifestyle are usually recommended to reduce fatigue. These include taking frequent naps and implementing exercise. MS patients who smoke are also advised to stop. Pharmacological treatment include anti-depressants and caffeine. Aspirin has also been experimented with and from clinical trial data, MS patients preferred using aspirin as compared to the placebo in the test. One hypothesis is that aspirin has an effect on the hypothalamus and can affect the perception of fatigue through altering the release of neurotransmitters and the autonomic responses.
There are no approved drugs for the treatment of cognitive dysfunction, however, some treatments have shown an association with improvements in cognitive function. One such treatment is "Ginkgo biloba", is a herb commonly used by patients with Alzheimer's disease.
Radiotherapy is the main choice of treatment for both SPB and extramedullary plasmacytoma, and local control rates of >80% can be achieved. This form of treatment can be used with curative intent because plasmacytoma is a radiosensitive tumor. Surgery is an option for extramedullary plasmacytoma, but for cosmetic reasons it is generally used when the lesion is not present within the head and neck region.
Most people, including those treated with ASCT, will relapse after initial treatment. Maintenance therapy using a prolonged course of low toxicity medications is often used to prevent relapse. A 2017 meta-analysis showed that post ASCT maintenance therapy with lenalidomide improved progression free survival and overall survival in people at standard risk. A 2012 clinical trial showed that people with intermediate and high risk disease benefit from a bortezomib based maintenance regimen.
An exostosis (plural: exostoses) is the formation of new bone on the surface of a bone. Exostoses can cause chronic pain ranging from mild to debilitatingly severe, depending on the shape, size, and location of the lesion. It is most commonly found in places like the ribs, where small bone growths form, but sometimes larger growths can grow on places like the ankles, knees, shoulders, elbows and hips. Very rarely are they on the skull.
They normally form on the bones of joints, and can grow upwards. For example, if an extra bone formed on the ankle, it might grow up to the shin.
Osteophytes are bone spurs that develop on the margins of joints secondary to external stimuli such as osteoarthritis. However, these are not always distinguished from exostoses in any definite way.
When used in the phrases "cartilaginous exostosis" or "osteocartilaginous exostosis", the term is considered synonymous with osteochondroma. Some sources consider the two terms to mean the same thing even without qualifiers, but this interpretation is not universal.
Osteochondromatosis is a condition involving a proliferation of osteochondromas.
Types include:
- Hereditary multiple exostoses
- Synovial osteochondromatosis
Osteochondrodysplasia or skeletal dysplasia is a general term for a disorder of the development (dysplasia) of bone ("osteo") and cartilage ("chondro").
Osteochondrodysplasias are rare diseases. About 1 in 5,000 babies are born with some type of skeletal dysplasia.
Osteogenesis imperfecta is a rare condition in which bones break easily. There are multiple genetic mutations in different genes for collagen that may result in this condition. It can be treated with some drugs to promote bone growth, by surgically implanting metal rods in long bones to strengthen them, and through physical therapy and medical devices to improve mobility.
The natural history of myeloma is of relapse following treatment. This may be attributed to tumor heterogeneity. Depending on the patient's condition, the prior treatment modalities used and the duration of remission, options for relapsed disease include re-treatment with the original agent, use of other agents (such as melphalan, cyclophosphamide, thalidomide or dexamethasone, alone or in combination), and a second autologous stem cell transplant.
Later in the course of the disease, "treatment resistance" occurs. This may be a reversible effect, and some new treatment modalities may re-sensitize the tumor to standard therapy. For patients with "relapsed disease", bortezomib is a recent addition to the therapeutic arsenal, especially as second line therapy, since 2005. Bortezomib is a proteasome inhibitor. Also, lenalidomide (Revlimid), a less toxic thalidomide analog, is showing promise for treating myeloma. The newly approved thalidomide derivative pomalidomide (Pomalyst in the U.S.) may be used for relapsed and refractory multiple myeloma.
In the 21st century, more patients have survived longer, as a result of stem cell transplant (with their own or a donor's) and treatments combining bortezomib (Velcade), dexamethasone and melphalan or cyclophosphamide. This seems to maintain the monoclonal peak at a reasonable level. Survival expectancy has risen. New treatments are under development.
Kidney failure in multiple myeloma can be acute (reversible) or chronic (irreversible). Acute kidney failure typically resolves when the calcium and paraprotein levels are brought under control. Treatment of chronic kidney failure is dependent on the type of kidney failure and may involve dialysis.
Several newer options are approved for the management of advanced disease:
- ixazomib — an orally available proteasome inhibitor indicated in combination with lenalidomide and dexamethasone in people who have received at least one prior therapy;
- panobinostat — an orally available histone deacetylase inhibitor used in combination with bortezomib and dexamethasone in people who have received at least 2 prior chemotherapy regimens, including bortezomib and an immunomodulatory agent (such as lenalidomide or pomalidomide);
- carfilzomib — a proteasome inhibitor that is indicated:
- as a single agent for the treatment of patients with relapsed or refractory multiple myeloma who have received one or more lines of therapy;
- in combination with dexamethasone or with lenalidomide+dexamethasone for the treatment of patients with relapsed or refractory multiple myeloma who have received one to three lines of therapy;
- elotuzumab — an immunostimulatory humanized monoclonal antibody against SLAMF7 (also known as CD319). It is FDA-approved for the treatment of patients who have received one to three prior therapies (in combination with lenalidomide and dexamethasone);
- daratumumab — a monoclonal antibody against CD38 indicated for the treatment of patients with multiple myeloma who have received at least three prior lines of therapy including a proteasome inhibitor and an immunomodulatory agent or who are double refractory to a proteasome inhibitor and an immunomodulatory agent.
Palmar digital neurectomy (or "nerving" or "denerving") is not without adverse side effects and should therefore be used as a last resort. In this procedure, the palmar digital nerves are severed, so the horse loses sensation in the back of the foot. This procedure should only be performed if it will eliminate the lameness associated with navicular syndrome, and only after all other options have been explored. The procedure is usually performed on both front feet. Complications can include infection of the wound, continuation of the lameness (if the nerves regrow or if small branches of the nerves are not removed), neuromas, and rupture of the deep digital flexor tendon. After the neurectomy, if the horse becomes injured in the area the injury may go undetected for a long period of time, which risks the animal's health. Due to this, the feet should be cleaned and inspected regularly. Neurectomy tends to lower the market value of a horse, and may even make the horse ineligible for competition. Neurectomy is controversial. The most common misconception about "nerving" a horse is that it will permanently solve the lameness/pain issue. In fact, though the time periods vary based on the individual horse and surgical method utilized, these nerves often regenerate and return sensation to the afflicted region within two to three years.
In navicular suspensory desmotomy, the ligaments supporting the navicular bone are severed. This makes the navicular bone more mobile, and thus reduces the tension of the other ligaments. It is successful about half of the time.
Osteochondromas or osteocartilaginous exostoses are the most common benign tumors of the bones.
The tumors take the form of cartilage-capped bony projections or outgrowth on the surface of bones (exostoses). It is characterized as a type of overgrowth that can occur in any bone where cartilage forms bone. Tumors most commonly affect long bones in the leg, pelvis, or scapula (shoulder blade). Development of osteochondromas take place during skeletal growth between the ages of 13 and 15 and ceases when the growth plate fuses at puberty. They arise within the first three decades of life affecting children and adolescents.
Osteochondromas occur in 3% of the general population and represent 35% of all benign tumors and 8% of all bone tumors. Majority of these tumors are solitary non-hereditary lesions and approximately 15% of osteochondromas occur as hereditary multiple osteochondromas (HMOs). They can occur as a solitary lesion (solitary osteochondroma) or multiple lesions within the context of the same bone (Multiple Osteochondroma). Osteochondromas do not result from injury and the exact cause remains unknown. Recent research has indicated that multiple osteochondromas is an autosomal dominant inherited disease. Germ line Mutations in "EXT1" and "EXT2" genes located on chromosomes 8 and 11 have been associated with the cause of the disease.
The treatment choice for osteochondroma is surgical removal of solitary lesion or partial excision of the outgrowth, when symptoms cause motion limitations or nerve and blood vessel impingements.
Evidence for exostosis found in the fossil record is studied by paleopathologists, specialists in ancient disease and injury. Exostosis has been reported in dinosaur fossils from several species, including "Acrocanthosaurus atokensis", "Albertosaurus sarcophagus", "Allosaurus fragilis", "Gorgosaurus libratus", and "Poekilopleuron bucklandii".
A complete radical, surgical, "en bloc" resection of the cancer, is the treatment of choice in osteosarcoma. Although about 90% of patients are able to have limb-salvage surgery, complications, particularly infection, prosthetic loosening and non-union, or local tumor recurrence may cause the need for further surgery or amputation.
Mifamurtide is used after a patient has had surgery to remove the tumor and together with chemotherapy to kill remaining cancer cells to reduce the risk of cancer recurrence. Also, the option to have rotationplasty after the tumor is taken out exists.
Patients with osteosarcoma are best managed by a medical oncologist and an orthopedic oncologist experienced in managing sarcomas. Current standard treatment is to use neoadjuvant chemotherapy (chemotherapy given before surgery) followed by surgical resection. The percentage of tumor cell necrosis (cell death) seen in the tumor after surgery gives an idea of the prognosis and also lets the oncologist know if the chemotherapy regimen should be altered after surgery.
Standard therapy is a combination of limb-salvage orthopedic surgery when possible (or amputation in some cases) and a combination of high-dose methotrexate with leucovorin rescue, intra-arterial cisplatin, adriamycin, ifosfamide with mesna, BCD (bleomycin, cyclophosphamide, dactinomycin), etoposide, and muramyl tripeptide. Rotationplasty may be used. Ifosfamide can be used as an adjuvant treatment if the necrosis rate is low.
Despite the success of chemotherapy for osteosarcoma, it has one of the lowest survival rates for pediatric cancer. The best reported 10-year survival rate is 92%; the protocol used is an aggressive intra-arterial regimen that individualizes therapy based on arteriographic response. Three-year event-free survival ranges from 50% to 75%, and five-year survival ranges from 60% to 85+% in some studies. Overall, 65–70% patients treated five years ago will be alive today. These survival rates are overall averages and vary greatly depending on the individual necrosis rate.
Filgrastim or pegfilgrastim help with white blood cell counts and neutrophil counts. Blood transfusions and epoetin alfa help with anemia. Computational analysis on a panel of Osteosarcoma cell lines identified new shared and specific therapeutic targets (proteomic and genetic) in Osteosarcoma, while phenotypes showed an increased role of tumor microenvironments.