Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment of HH may consist of administration of either a GnRH agonist or a gonadotropin formulation in the case of primary HH and treatment of the root cause (e.g., a tumor) of the symptoms in the case of secondary HH. Alternatively, hormone replacement therapy with androgens and estrogens in males and females, respectively, may be employed.
Treatment may consist of hormone replacement therapy with androgens in either sex. Alternatively, gonadotropin-releasing hormone (GnRH)/GnRH agonists or gonadotropins may be given (in the case of "hypogonadotropic" hypoandrogenism). The Food and Drug Administration (FDA) stated in 2015 that neither the benefits nor the safety of testosterone have been established for low testosterone levels due to aging. The FDA has required that testosterone pharmaceutical labels include warning information about the possibility of an increased risk of heart attacks and stroke.
The aim for hormone replacement therapy (HRT) for both men and women is to ensure that the level of circulating hormones (testosterone for men and oestrogen/progesterone for women) is at the normal physiological level for the age of the patient. At first the treatment will produce most of the physical and psychological changes seen at puberty, with the major exception that there will be no testicular development in men and no ovulation in women.
After the optimum physical development has been reached HRT for men will continue to ensure that the normal androgen function is maintained; such as libido, muscle development, energy levels, hair growth, and sexual function. In women, a variety of types of HRT will either give a menstruation cycle or not as preferred by the patient. HRT is very important in both men and women to maintain bone density and to reduce the risk of early onset osteoporosis.
The fertility treatments used for both men and women would still include hormone replacement in their action.
There are a range of different preparations available for HRT for both men and women; a lot of these, especially those for women are the same used for standard HRT protocols used when hormone levels fall in later life or after the menopause.
For males with KS / CHH the types of delivery method available include daily patches, daily gel use, daily capsules, sub cutaneous or intramuscular injections or six monthly implants. Different formulations of testosterone are used to ensure both the anabolic and androgenic effects of testosterone are achieved.
Testosterone undecanoate is commonly used worldwide, though less so in the US, for treating male KS / CHH patients and has proved to be effective in maintaining good testosterone levels with an increased injection period of up to 12 weeks.
The precise treatment method used and interval between injections will vary from patient to patient and may need to be adjusted to maintain a physiological normal level of testosterone over a longer period of time to prevent the mood swings or adverse effects that can occur if testosterone levels are too high or low. Some treatments may work better with some patients than others so it might be a case of personal choice as which one to use.
As an alternative human chorionic gonadotrophin (hCG) can also be used to stimulate natural testosterone production. It acts in the same way as LH; stimulating the Leydig cells in the testes to produce testosterone. hCG can be used as pre-cursor to male fertility treatments but it can be used in isolation just for testosterone production.
There are no specialist HRT treatments available just for women with KS/HH but there are multitude of different HRT products on the market including oral contraceptives and standard post-menopause products. Pills are popular but patches are also available. It may take some trial and error to find the appropriate HRT for the patient depending on how her body reacts to the particular HRT. Specialist medical advice will be required to ensure the correct levels of oestrogen and progesterone are maintained each month, depending on whether the patient requires continuous HRT (no-bleed) or a withdrawal option to create a "menstrual" type bleed. This withdrawal bleed can be monthly or over longer time periods depending on the type of medication used.
Treatment for KS and other forms of HH can be divided into hormone replacement therapy and fertility treatments.
Administration of luteinizing hormone (LH) (or human chorionic gonadotropin) and follicle-stimulating hormone (FSH) is very effective in the treatment of male infertility due to hypogonadotropic hypogonadism. Although controversial, off-label clomiphene citrate, an antiestrogen, may also be effective by elevating gonadotropin levels.
Though androgens are absolutely essential for spermatogenesis and therefore male fertility, exogenous testosterone therapy has been found to be ineffective in benefiting men with low sperm count. This is thought to be because very high local levels of testosterone in the testes (concentrations in the seminiferous tubules are 20- to 100-fold greater than circulating levels) are required to mediate spermatogenesis, and exogenous testosterone therapy (which is administered systemically) cannot achieve these required high local concentrations (at least not without extremely supraphysiological dosages). Moreover, exogenous androgen therapy can actually impair or abolish male fertility by suppressing gonadotropin secretion from the pituitary gland, as seen in users of androgens/anabolic steroids (who often have partially or completely suppressed sperm production). This is because suppression of gonadotropin levels results in decreased testicular androgen production (causing diminished local concentrations in the testes) and because FSH is independently critical for spermatogenesis. In contrast to FSH, LH has little role in male fertility outside of inducing gonadal testosterone production.
Estrogen, at some concentration, has been found to be essential for male fertility/spermatogenesis. However, estrogen levels that are too high can impair male fertility by suppressing gonadotropin secretion and thereby diminishing intratesticular androgen levels. As such, clomiphene citrate (an antiestrogen) and aromatase inhibitors such as testolactone or anastrozole have shown effectiveness in benefiting spermatogenesis.
Low-dose estrogen and testosterone combination therapy may improve sperm count and motility in some men, including in men with severe oligospermia.
Pre- and post-testicular azoospermia are frequently correctible, while testicular azoospermia is usually permanent. In the former the cause of the azoospermia needs to be considered and it opens up possibilities to manage this situation directly. Thus men with azoospermia due to hyperprolactinemia may resume sperm production after treatment of hyperprolactinemia or men whose sperm production is suppressed by exogenous androgens are expected to produce sperm after cessation of androgen intake. In situations where the testes are normal but unstimulated, gonadotropin therapy can be expected to induce sperm production.
A major advancement in recent years has been the introduction of IVF with ICSI which allows successful fertilization even with immature sperm or sperm obtained directly from testicular tissue. IVF-ICSI allows for pregnancy in couples where the man has irreversible testicular azoospermia as long as it is possible to recover sperm material from the testes. Thus men with non-mosaic Klinefelter's syndrome have fathered children using IVF-ICSI. Pregnancies have been achieved in situations where azoospermia was associated with cryptorchism and sperm where obtained by testicular sperm extraction (TESE).
In men with posttesticular azoospermia a number of approaches are available. For obstructive azoospermia IVF-ICSI or surgery can be used and individual factors need to be considered for the choice of treatment. Medication may be helpful for retrograde ejaculation.
Treatments vary according to the underlying disease and the degree of the impairment of the male fertility. Further, in an infertility situation, the fertility of the female needs to be considered.
Pre-testicular conditions can often be addressed by medical means or interventions.
Testicular-based male infertility tends to be resistant to medication. Usual approaches include using the sperm for intrauterine insemination (IUI), in vitro fertilization (IVF), or IVF with intracytoplasmatic sperm injection (ICSI). With IVF-ICSI even with a few sperm pregnancies can be achieved.
Obstructive causes of post-testicular infertility can be overcome with either surgery or IVF-ICSI. Ejaculatory factors may be treatable by medication, or by IUI therapy or IVF.
Vitamin E helps counter oxidative stress, which is associated with sperm DNA damage and reduced sperm motility. A hormone-antioxidant combination may improve sperm count and motility. However there is only some low quality evidence from few small studies that oral antioxidants given to males in couples undergoing in vitro fertilisation for male factor or unexplained subfertility result in higher live birth rate. It is unclear if there are any adverse effects.
The disorder is treated with vasopressin analogs such as Desmopressin. Nonetheless, many times desmopressin alone is not enough to bring under control all the symptoms, and another intervention must be implemented.
Hypogonadotropic hypogonadism (HH), also known as secondary or central hypogonadism, as well as gonadotropin-releasing hormone deficiency or gonadotropin deficiency (GD), is a medical condition characterized by hypogonadism due to an impaired secretion of gonadotropins, including follicle-stimulating hormone (FSH) and luteinizing hormone (LH), by the pituitary gland in the brain, and in turn decreased gonadotropin levels and a resultant lack of sex steroid production.
The fertile eunuch syndrome is a cause of hypogonadotropic hypogonadism caused by a luteinizing hormone deficiency. It is characterized by hypogonadism with spermatogenesis. Pasqualini and Bur published the first case of eunuchoidism with preserved spermatogenesis in 1950 in la Revista de la Asociación Médica Argentina.
The hypoandrogenism with spermatogenesis syndrome included: (a) eunuchoidism, (b) testis with normal spermatogenesis and full volume, with mature spermatozoids in a high proportion of seminiferous tubes and undifferentiated and immature Leydig cells (c) full functional compensation through the administration of chorionic gonadotropin hormone, while hCG is administered (d) total urinary gonadotrophins within normal limits (e) this definition implies the normal activity of the pituitary and the absence of congenital malformations in general. In describing five other similar cases in 1953, Mc Cullagh & al coined the term fertile eunuch introducing it in the English literature. Unfortunately, this term is incorrect and should not be employed. Indeed, these patients are not really eunuchs. Moreover, as it will be explained later, they are not usually fertile if not treated.
A first step in the understanding of the physiopathology of Pasqualini syndrome was the absence of Lutheinizing Hormone (LH) in plasma and urine of patients. The second breakthrough was the functional and genetic studies that validated the hypothesis of a functional deficit of LH in these men. Inactivating LH mutations will then also be described in some women. Different groups demonstrated in these cases a LH with varying degrees of immunological activity but biologically inactive in most of the patients, due to one or more inactivating mutations in the LHB gene. Finally, the full comprehension of Pasqualini syndrome allowed to reverse the hypoandrogenic phenotype and to restore fertility in these patients through the use of chorionic gonadotropin and the modern in-vitro fertility techniques
Familial male-limited precocious puberty, often abbreviated as FMPP, also known as familial sexual precocity or gonadotropin-independent testotoxicosis, is a form of gonadotropin-independent precocious puberty in which boys experience early onset and progression of puberty. Signs of puberty can develop as early as an age of 1 year.
The spinal length in boys may be short due to a rapid advance in epiphyseal maturation. It is an autosomal dominant condition with a mutation of the luteinizing hormone (LH) receptor. Treatment is with drugs that suppress gonadal steroidogenesis, such as cyproterone acetate, ketoconazole, spironolactone, and testolactone. Alternatively, the combination of the androgen receptor antagonist bicalutamide and the aromatase inhibitor anastrozole may be used.
Gonadotropin-releasing hormone (GnRH) insensitivity is a rare autosomal recessive genetic and endocrine syndrome which is characterized by inactivating mutations of the gonadotropin-releasing hormone receptor (GnRHR) and thus an insensitivity of the receptor to gonadotropin-releasing hormone (GnRH), resulting in a partial or complete loss of the ability of the gonads to synthesize the sex hormones. The condition manifests itself as isolated hypogonadotropic hypogonadism (IHH), presenting with symptoms such as delayed, reduced, or absent puberty, low or complete lack of libido, and infertility, and is the predominant cause of IHH when it does not present alongside anosmia.
Androgen deficiency is not usually checked for diagnosis in healthy women.
Isolated hypogonadotropic hypogonadism (IHH), also called idiopathic or congenital hypogonadotropic hypogonadism (CHH), as well as isolated or congenital gonadotropin-releasing hormone deficiency (IGD), is a condition which results in a small subset of cases of hypogonadotropic hypogonadism (HH) due to deficiency in or insensitivity to gonadotropin-releasing hormone (GnRH) where the function and anatomy of the anterior pituitary is otherwise normal and secondary causes of HH are not present.
Congenital hypogonadotropic hypogonadism presents as hypogonadism, e.g., reduced or absent puberty, low libido, infertility, etc. due to an impaired release of the gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), and a resultant lack of sex steroid and peptides production by the gonads.
In Kallmann syndrome, a variable non-reproductive phenotype occurs with anosmia (loss of the sense of smell) including sensorineural deafness, coloboma, bimanual synkinesis, craniofacial abnormalities, and/or renal agenesis.
Canakinumab has been approved for treatment of HIDS and has shown to be effective. The immunosuppressant drugs etanercept and anakinra have also shown to be effective. Statin drugs might decrease the level of mevalonate and are presently being investigated. A recent single case report highlighted bisphosphonates as a potential therapeutic option.
Acne treatment may require oral tetracycline antibiotics or isotretinoin. Treatments directed at tumor necrosis factor (TNF) (infliximab, etanercept) and interleukin-1 (anakinra) have shown a good response in resistant arthritis and pyoderma gangrenosum. Other traditional immunosuppressant treatments for arthritis or pyoderma gangrenosum may also be used.
X-linked adrenal hypoplasia congenita is a genetic disorder that mainly affects males. It involves many endocrine tissues in the body, especially the adrenal glands.
One of the main characteristics of this disorder is adrenal insufficiency, which is a reduction in adrenal gland function resulting from incomplete development of the gland's outer layer (the adrenal cortex). Adrenal insufficiency typically begins in infancy or in childhood and can cause vomiting, difficulty with feeding, dehydration, extremely low blood sugar (hypoglycemia), low sodium levels, and shock. However, adult-onset cases have also been described. See also Addison's Disease.
Affected males may also lack male sex hormones, which leads to underdeveloped reproductive tissues, undescended testicles (cryptorchidism), delayed puberty, and an inability to father children (infertility). These characteristics are known as hypogonadotropic hypogonadism. Females are rarely affected by this disorder, but a few cases have been reported of adrenal insufficiency or a lack of female sex hormones, resulting in underdeveloped reproductive tissues, delayed puberty, and an absence of menstruation.
Although the FD-causing gene has been identified and it seems to have tissue specific expression, there is no definitive treatment at present.
Treatment of FD remains preventative, symptomatic and supportive. FD does not express itself in a consistent manner. The type and severity of symptoms displayed vary among patients and even at different ages on the same patients. So patients should have specialized individual treatment plans. Medications are used to control vomiting, eye dryness, and blood pressure. There are some commonly needed treatments including:
1. Artificial tears: using eye drops containing artificial tear solutions (methylcellulose)
2. Feeding: Maintenance of adequate nutrition, avoidance of aspiration; thickened formula and different shaped nipples are used for baby.
3. Daily chest physiotherapy (nebulization, bronchodilators, and postural drainage): for Chronic lung disease from recurrent aspiration pneumonia
4. Special drug management of autonomic manifestations such as vomiting: intravenous or rectal diazepam (0.2 mg/kg q3h) and rectal chloral hydrate (30 mg/kg q6h)
5. Protecting the child from injury (coping with decreased taste, temperature and pain perception)
6. Combating orthostatic hypotension: hydration, leg exercise, frequent small meals, a high-salt diet, and drugs such as fludrocortisone.
7. Treatment of orthopedic problems (tibial torsion and spinal curvature)
8. Compensating for labile blood pressures
There is no cure for Familial Dysautonomia.
There is currently no cure for FD and death occurs in 50% of the affected individuals by age 30. There are only two treatment centers, one at New York University Hospital and one at the Sheba Medical Center in Israel. One is being planned for the San Francisco area.
The survival rate and quality of life have increased since the mid-1980s mostly due to a greater understanding of the most dangerous symptoms. At present, FD patients can be expected to function independently if treatment is begun early and major disabilities avoided.
A major issue has been aspiration pneumonia, where food or regurgitated stomach content would be aspirated into the lungs causing infections. Fundoplications (by preventing regurgitation) and gastrostomy tubes (to provide nonoral nutrition) have reduced the frequency of hospitalization.
Other issues which can be treated include FD crises, scoliosis, and various eye conditions due to limited or no tears.
An FD crisis is the body's loss of control of various autonomic nervous system functions including blood pressure, heart rate, and body temperature. Both short-term and chronic periodic high or low blood pressure have consequences and medication is used to stabilize blood pressure.
Azoospermia is the medical condition of a man whose semen contains no sperm. It is associated with infertility, but many forms are amenable to medical treatment. In humans, azoospermia affects about 1% of the male population and may be seen in up to 20% of male infertility situations.
Treatment of LPLD has two different objectives: immediate prevention of pancreatitis attacks and long term reduction of cardiovascular disease risk. Treatment is mainly based on medical nutrition therapy to maintain plasma triglyceride concentration below 11,3 mmol/L (1000 mg/dL). Maintenance of triglyceride levels below 22,6 mmol/L (2000 mg/dL) prevents in general from recurrent abdominal pain.
Strict low fat diet and avoidance of simple carbohydrates
Restriction of dietary fat to not more than 20 g/day or 15% of the total energy intake is usually sufficient to reduce plasma triglyceride concentration, although many patients report that to be symptom free a limit of less than 10g/day is optimal. Simple carbohydrates should be avoided as well. Medium-chain triglycerides can be used for cooking, because they are absorbed into the portal vein without becoming incorporated into chylomicrons. Fat-soluble vitamins A, D, E, and K, and minerals should be supplemented in patients with recurrent pancreatitis since they often have deficiencies as a result of malabsorption of fat. However, the diet approach is difficult to sustain for many of the patients.
Lipid lowering drugs
Lipid-lowering agents such as fibrates and omega-3-fatty acids can be used to lower TG levels in LPLD, however those drugs are very often not effective enough to reach treatment goals in LPLD patients. Statins should be considered to lower elevated non-HDL-Cholesterol.
Additional measures are avoidance of agents known to increase endogenous triglyceride levels, such as alcohol, estrogens, diuretics, isotretinoin, anidepressants (e.g. sertraline) and b-adrenergic blocking agents.
Gene therapy
In 2012, the European Commission approved alipogene tiparvovec (Glybera), a gene therapy for adults diagnosed with familial LPLD (confirmed by genetic testing) and suffering from severe or multiple pancreatitis attacks despite dietary fat restrictions. It was the first gene therapy to receive marketing authorization in Europe; it was priced at about $1 million per treatment, and as of 2016, only one person had been treated with it.
Currently, there is no specific treatment to correct the LCAT deficiency so therapy is focused on symptom relief. Corneal transplant may be considered for patients presenting with severely impaired vision caused by cholesterol corneal opacities. Dialysis may be required for patients presenting with renal failure, and kidney transplant may be considered.
Topical steroid preparations often help outbreaks; use of the weakest corticosteroid that is effective is recommended to help prevent thinning of the skin. Drugs such as antibiotics, antifungals, corticosteroids, dapsone, methotrexate, thalidomide, etretinate, cyclosporine and, most recently, intramuscular alefacept may control the disease but are ineffective for severe chronic or relapsing forms of the disease. Intracutaneous injections of botulinum toxin to inhibit perspiration may be of benefit. Maintaining a healthy weight, avoiding heat and friction of affected areas, and keeping the area clean and dry may help prevent flares.
Some have found relief in laser resurfacing that burns off the top layer of the epidermis, allowing healthy non-affected skin to regrow in its place.
Secondary bacterial, fungal and/or viral infections are common and may exacerbate an outbreak. Some people have found that outbreaks are triggered by certain foods, hormone cycles and stress.
In a few cases naltrexone appears to help.