Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The treatment of pentalogy of Cantrell is directed toward the specific symptoms that are apparent in each individual. Surgical intervention for cardiac, diaphragmatic and other associated defects is necessary. Affected infants will require complex medical care and may require surgical intervention. In most cases, pentalogy of Cantrell is fatal without surgical intervention. However, in some cases, the defects are so severe that the individual dies regardless of the medical or surgical interventions received.
The specific treatment strategy will vary from one infant to another based upon various factors, including the size and type of abdominal wall defect, the specific cardiac anomalies that are present, and the particular type of ectopia cordis. Surgical procedures that may be required shortly after birth include repair of an omphalocele. At this time, physicians may also attempt to repair certain other defects including defects of the sternum, diaphragm and the pericardium.
In severe cases, some physicians advocate for a staged repair of the defects associated with pentalogy of Cantrell. The initial operation immediately after birth provides separation of the peritoneal and pericardial cavities, coverage of the midline defect and repair of the omphalocele. After appropriate growth of the thoracic cavity and lungs, the second stage consists of the repair of cardiac defects and return of the heart to the chest. Eventually, usually by age 2 or 3, reconstruction of the lower sternum or epigastrium may be necessary.
Other treatment of pentalogy of Cantrell is symptomatic and supportive.
The first step in management is orogastric tube placement and securing the airway (intubation). The baby will usually be immediately placed on a ventilator.
Extracorporeal membrane oxygenation (ECMO) has been used as part of the treatment strategy at some hospitals. ECMO acts as a baby heart-lung bypass (though it can be used for older children as well). A venous cannula is inserted into the jugular vein or the common femoral vein(ECMO is divided into two types; (arteriovenous AV and venovenous VV), allowing the blood to exit the body and begin its trek through the ECMO circuit, it is then scrubbed, oxygenated, and passes through a filter before being returned to the body via a second cannula into the baby’s own circulatory system where it makes its rounds before returning to the ECMO circuit to be oxygenated again. In essence, the ECMO circuit acts as the baby's lungs. Babies require extra blood volume and hefty doses of blood thinners in order to keep the circuit running without clot formation, which could be potentially fatal. Even though the baby is not using her lungs, an ocillating ventilator maybe still be used to keep some air in the lungs so that they do not fully collapse while not being used. During ECMO the pulmonary artery has a chance to rest, as it were, thus hopefully reducing the presence of pulmonary hypertension, one of the biggest complication of CDH cases. CDH repair can be done while the baby is on ECMO, although blood thinners increase the risk of bleeding complications. Usually surgeons prefer to perform CDH repairs off ECMO. Once the baby is taken off ECMO the carotid artery is sealed and can no longer be used. When repairing the hernia an incision is made in the abdomen. The hernia can sometimes be simply stitched closed but in more complicated cases a patch may be required. A synthetic patch can be used but will usually require replacement later as the child grows. A more natural patch can be created by slicing and folding over a section of abdominal muscle and securing it to the existing piece of diaphragm. Any organ displacement is corrected during surgery. Though the heart and lungs will usually move back into position on their own, once displaced organs such as bowel, liver, or stomach, are out of the way. The incision is then closed. Sometimes, the incision site will be left open to allow the body to adjust to newly moved organs and the pressure associated with that, and then closed later once swelling and drainage has decreased.
Diaphragm eventration is typically repaired thoracoscopically, by a technique called plication of the diaphragm. Plication basically involves a folding of the eventrated diaphragm which is then sutured in order to “take up the slack” of the excess diaphragm tissue.
These hernias should be repaired because of the high risk of strangulation; fortunately, surgery is straightforward, with only larger defects requiring a mesh prosthesis. Varied Spigelian hernia mesh repair techniques have been described, although evidence suggests laparoscopy results in less morbidity and shorter hospitalization compared with open procedures. Mesh-free laparoscopic suture repair is feasible and safe. This novel uncomplicated approach to small Spigelian hernias combines the benefits of laparoscopic localization, reduction, and closure without the morbidity and cost associated with foreign material.
No treatment is needed for correcting lung hernias. Some surgeons offer cosmetic surgery to remove the protruding mass.
The complete or partial absence of the pectoralis muscle is the malformation that defines Poland Syndrome. It can be treated by inserting a custom implant designed by CAD (computer aided design). A 3D reconstruction of the patient's chest is performed from a medical scanner to design a virtual implant perfectly adapted to the anatomy of each one. The implant is made of medical silicone unbreakable rubber. This treatment is purely cosmetic and does not make up for the patient's imbalanced upper body strength.
The Poland syndrome malformations being morphological, correction by custom implant is a first-line treatment. This technique allows a wide variety of patients to be treated with good outcomes. Poland Syndrome can be associated with bones, subcutaneous and mammary atrophy: if the first, as for pectus excavatum, is successfully corrected by a custom implant, the others can require surgical intervention such as lipofilling or silicone breast implant, in a second operation.
The surgery takes place under general anaesthesia and lasts less than 1 hour. The surgeon prepares the locus to the size of the implant after performing a 8-cm axillary incision and inserts the implant beneath the skin. The closure is made in 2 planes.
The implant will replace the pectoralis major muscle, thus enabling the thorax to be symmetrical and, in women, the breast as well. If necessary, especially in the case of women, a second operation will complement the result by the implantation of a breast implant and / or lipofilling.
Lipomodelling is progressively used in the correction of breast and chest wall deformities. In Poland syndrome, this technique appears to be a major advance that will probably revolutionize the treatment of severe cases. This is mainly due to its ability to achieve previously unachievable quality of reconstruction with minimal scaring.
In order to treat a Bochdalek hernia, the baby's physician must take into account multiple factors. First, the diagnosis will vary depending on whether the Bochdalek hernia was found during fetal development or after birth. "The key to survival lies in prompt diagnosis and treatment." Second, the baby's overall health and medical history will be evaluated. Third, the doctor will look at the seriousness of the condition. Fourth, the baby will need to be evaluated at the level of medication, procedure and therapy he or she can handle, and finally, the doctor will take into consideration the opinion and preference of the parents. After these things are all taken into consideration and evaluated, the doctor will determine how to treat the baby. There are three different treatments available. The first treatment includes the baby's admission into the NICU (Neonatal Intensive Care Unit). In most Bochdalek Hernia cases, babies who are admitted in the NICU, are placed on a mechanical ventilator to help breathing. Another treatment involves putting the infants on a temporary heart/lung bypass machine, called an ECMO. This normally pertains to children who have severe problems. ECMO performs the tasks the regularly functioning hearts and lungs do. ECMO allows oxygen to be regulated into the blood and then pumps the blood throughout the entire body. Normally, this machine is used to stabilize the baby's condition. The third option in treatment is surgery.
After the baby is stable and his or her state has improved, the diaphragm can be fixed and the misplaced organs can be relocated to their correct position. Although these are various treatments for Bochdalek Hernias, it does not guarantee the baby will survive. Since the baby must go through some or all of the previous treatments, the baby's hospital stay is usually longer than that of a "normal" newborn. The average infants born with a Bochdalek Hernia stay in the hospital between 23.1 and 26.8 days.
Anemia associated with Cameron lesions usually responds to oral iron medication, which may be needed for years. Gastric acid suppression may promote lesion healing and a proton-pump inhibitor such as omeprazole is often prescribed. Surgical hernia repair is sometimes needed for indications such as refractory anemia requiring repeated blood transfusions, or anemia combined with other hernia symptoms.
Currently, there are no treatments available for JEB. However, the disorder can be prevented through good breeding management. Horses that are carriers of JEB should not be incorporated into breeding programs. Although, if breeders are insistent on breeding a carrier, precautions need to be taken to ensure that the other mate is not a carrier as well. Genetic testing for the disorder is highly recommended among breeding programs for the Draft horse and Saddlebred breeds to determine their carrier status.
Symptomatic epigastric hernias are repaired with surgery. Even if they are asymptomatic, they can be surgically corrected for cosmetic reasons. In general, cosmetic surgery on infants is delayed until the infant is older and better able to tolerate anaesthesia.
The treatment of arterial tortuosity syndrome entails possible surgery for aortic aneurysms, as well as, follow ups which should consist of EGC. The prognosis of this condition has it at about 12% mortality
Azathioprine is a steroid-sparing agent used in combination with Prednisone. It functions by inhibiting RNA and DNA synthesis.
Prednisone is an immunosuppressive agent which affects all of the organ systems. Effects on the cellular level include cell activation, replication, differentiation, and mobility. The overall goal is to decrease blistering (inhibition of immediate and delayed hypersensitivity) through decreasing the production of autoantibodies. In order to suppress the production of antibodies, higher doses must be administered. Lesser doses can be prescribed in order to achieve suppression of monocyte function.
The use of steroids (Dexamethasone) coupled with an antibiotic (Amoxicillin) will support the kitten in a number of ways, the steroid enhancing maturation and the antibiotic addressing the possibility of underlying infection and compensating for the immuno-depressant properties of the steroid. The steroid will also encourage the kitten to feed more energetically, keeping its weight up. Several breeders believe that Taurine plays a part in the condition, and it may be that some cases are Taurine-related. These breeders give the queen large doses of Taurine (1000 mg) daily until the kittens recover – apparently within a few days. Given that most FCKS cases take weeks rather than days to recover, this supplement may be relevant.
There is no cure for IBS but in the future gene therapy may offer a cure.
Treatments for IBS generally attempt to improve the appearance of the skin and the comfort of the sufferer. This is done by exfoliating and increasing the moisture of the skin. Common treatments include:
- Emollients: moisturisers, petroleum jelly or other emolients are used, often several times a day, to increase the moisture of the skin.
- Baths: long baths (possibly including salt) several times a week are used to soften the skin and allow exfoliation.
- Exfoliating creams: creams containing keratolytics such as urea, salicylic acid and lactic acid may be useful.
- Antiseptic washes: antiseptics may be used to kill bacteria in the skin and prevent odour.
- Retenoids: very severe cases may use oral retinoids to control symptoms but these have many serious side effects including, in the case of IBS, increased blistering.
Esophageal webs and rings can be treated with endoscopic dilation.
Treatment is difficult to define given the number of different causes and the wealth of anecdotal information collected by and from cat breeders. Treatments have hitherto been based on the assumption that FCKS is caused by a muscular spasm, and their effectiveness is impossible to assess because some kittens will recover spontaneously without intervention.
Diaphragmatic spasm is easily tested for and treated by short term interruption of the Phrenic nerve. The nerve runs down the outside of the neck where the neck joins to the shoulder, within a bundle of muscles and tendons at this junction. The cluster can be pinched gently and held for a few seconds each time. Kittens with spasmodic FCKS will show almost immediate improvement, but the treatment may need to be repeated several times over a few days as the spasm may have a tendency to recur. [Um für diapragmatisch Sparmus zu prüfen, Sie müssen der Phrenikus finden (es heisst auch der Zwerchfellnerv), der lauft am aussen des Hals, wo der Hals trifft die Schulter. Da gibt es mehrere Muskeln und Sehnen–da es unmoeglich ist die Nerv allein zu finden bzw. kneifen, müssen Sie die ganze Menge zusammen ruhig kneifen für ein paar Sekunden. Wenn es doch diapragmatisch Spasmus ist und Sie das Phrenikus gut kneifest (manchmal aber nicht immer werde die Katze mit den hinteren Beinen kicken), sollen Sie sofort eine Verbesserung anschauen. Es kann sein, dass die Spasmus wieder kommt nachher im kommenden Tage—in dem Fall müssen Sie es nochmal machen. Wenn Sie aber keine Verbesserung siehst, ist der Problem dann leider etwas anders.]
Continuous positive air pressure (CPAP) is used in human babies with lung collapse, but this is impossible with kittens. It is possible that the success of some breeders in curing kittens by splinting the body, thus putting pressure on the ribcage, was successful as it has created the effect of positive air pressure, thus gradually re-inflating the lungs by pulling them open rather than pushing them open as is the case with CPAP.
Since the syndrome is caused by a genetic mutation in the individual's DNA, a cure is not available. Treatment of the symptoms and management of the syndrome, however, is possible.
Depending on the manifestation, surgery, increased intake of glucose, special education, occupational therapy, speech therapy, and physical therapy are some methods of managing the syndrome and associated symptoms.
Management has three components: interventions before delivery, timing and place of delivery, and therapy after delivery.
In some cases, fetal therapy is available for the underlying condition; this may help to limit the severity of pulmonary hypoplasia. In exceptional cases, fetal therapy may include fetal surgery.
A 1992 case report of a baby with a sacrococcygeal teratoma (SCT) reported that the SCT had obstructed the outlet of the urinary bladder causing the bladder to rupture in utero and fill the baby's abdomen with urine (a form of ascites). The outcome was good. The baby had normal kidneys and lungs, leading the authors to conclude that obstruction occurred late in the pregnancy and to suggest that the rupture may have protected the baby from the usual complications of such an obstruction. Subsequent to this report, use of a vesicoamniotic shunting procedure (VASP) has been attempted, with limited success.
Often, a baby with a high risk of pulmonary hypoplasia will have a planned delivery in a specialty hospital such as (in the United States) a tertiary referral hospital with a level 3 neonatal intensive-care unit. The baby may require immediate advanced resuscitation and therapy.
Early delivery may be required in order to rescue the fetus from an underlying condition that is causing pulmonary hypoplasia. However, pulmonary hypoplasia increases the risks associated with preterm birth, because once delivered the baby requires adequate lung capacity to sustain life. The decision whether to deliver early includes a careful assessment of the extent to which delaying delivery may increase or decrease the pulmonary hypoplasia. It is a choice between expectant management and active management. An example is congenital cystic adenomatoid malformation with hydrops; impending heart failure may require a preterm delivery. Severe oligohydramnios of early onset and long duration, as can occur with early preterm rupture of membranes, can cause increasingly severe PH; if delivery is postponed by many weeks, PH can become so severe that it results in neonatal death.
After delivery, most affected babies will require supplemental oxygen. Some severely affected babies may be saved with extracorporeal membrane oxygenation (ECMO). Not all specialty hospitals have ECMO, and ECMO is considered the therapy of last resort for pulmonary insufficiency. An alternative to ECMO is high-frequency oscillatory ventilation.
Recent research has focused on changing the mixture of keratins produced in the skin. There are 54 known keratin genes—of which 28 belong to the type I intermediate filament genes and 26 to type II—which work as heterodimers. Many of these genes share substantial structural and functional similarity, but they are specialized to cell type and/or conditions under which they are normally produced. If the balance of production could be shifted away from the mutated, dysfunctional keratin gene toward an intact keratin gene, symptoms could be reduced. For example, sulforaphane, a compound found in broccoli, was found to reduce blistering in a mouse model to the point where affected pups could not be identified visually, when injected into pregnant mice (5 µmol/day = 0.9 mg) and applied topically to newborns (1 µmol/day = 0.2 mg in jojoba oil).
As of 2008 clinical research at the University of Minnesota has included a bone marrow transplant to a 2-year-old child who is one of 2 brothers with EB. The procedure was successful, strongly suggesting that a cure may have been found. A second transplant has also been performed on the child's older brother, and a third transplant is scheduled for a California baby. The clinical trial will ultimately include transplants to 30 subjects. However, the severe immunosuppression that bone marrow transplantation requires causes a significant risk of serious infections in patients with large scale blisters and skin erosions. Indeed, at least four patients have died in the course of either preparation for or institution of bone marrow transplantation for epidermolysis bullosa, out of only a small group of patients treated so far.
A pilot study performed in 2015 suggests that systemic granulocyte-colony stimulating factor (G-CSF) may promote increased wound healing in patients with dystrophic epidermolysis bullosa. In this study seven patients with dystrophic epidermolysis bullosa were treated daily with subcutaneous G-CSF for six days and then re-evaluated on the seventh day. After six days of treatment with G-CSF, the size of the open lesions were reduced by a median of 75.5% and the number of blisters and erosions on the patients were reduced by a median of 36.6%.
The Epidermolysis Bullosa Activity and Scarring index (EBDASI) is a scoring system that objectively quantifies the severity of epidermolysis bullosa. The EBDASI is a tool for clinicians and patients to monitor the severity of the disease. It has also been designed to evaluate the response to new therapies for the treatment of EB. The EBDASI was developed and validated by Professor Dedee Murrell and her team of students and fellows at the St George Hospital, University of New South Wales, in Sydney, Australia. It was presented at the International Investigative Dermatology congress in Edinburgh in 2013 and a paper-based version was published in the "Journal of the American Academy of Dermatology" in 2014.
In the great majority of cases, sufferers experience no life-altering discomfort, and no treatment is required. If there is pain or discomfort, 3 or 4 sips of room temperature water will usually relieve the pain. Symptomatic patients should elevate the head of their beds and avoid lying down directly after meals. If the condition has been brought on by stress, stress reduction techniques may be prescribed, or if overweight, weight loss may be indicated. Antisecretory drugs like proton pump inhibitors and H receptor blockers can be used to reduce acid secretion. Medications that reduce the lower esophageal sphincter (LES) pressure should be avoided.
However, in some unusual instances, as when the hiatal hernia is unusually large, or is of the paraesophageal type, it may cause esophageal stricture or severe discomfort. About 5% of hiatus hernias are paraesophageal. If symptoms from such a hernia are severe for example if chronic acid reflux threatens to severely injure the esophagus or is causing Barrett's esophagus, surgery is sometimes recommended. However surgery has its own risks including death and disability, so that even for large or paraesophageal hernias, watchful waiting may on balance be safer and cause fewer problems than surgery. Complications from surgical procedures to correct a hiatus hernia may include gas bloat syndrome, dysphagia (trouble swallowing), dumping syndrome, excessive scarring, and rarely, achalasia. Surgical procedures sometimes fail over time, requiring a second surgery to make repairs.
One surgical procedure used is called Nissen fundoplication. In fundoplication, the gastric fundus (upper part) of the stomach is wrapped, or plicated, around the inferior part of the esophagus, preventing herniation of the stomach through the hiatus in the diaphragm and the reflux of gastric acid. The procedure is now commonly performed laparoscopically. With proper patient selection, laparoscopic fundoplication recent studies have indicated relatively low complication rates, quick recovery, and relatively good long term results.
Some surgeons choose to perform "key-hole" or laparoscopic surgery (also called minimally invasive surgery) rather than conventional "open" surgery. With minimally invasive surgery, one or more small incisions are made that allow the surgeon to use a surgical camera and small tools to repair the hernia.
Either open or minimally invasive surgery may be performed under general or regional anaesthesia, depending on the extent of the intervention needed. Three approaches have been described for open surgery.
- Lockwood’s infra-inguinal approach
- Lotheissen‘s trans-inguinal approach
- McEvedy’s high approach
The infra-inguinal approach is the preferred method for elective repair. The trans-inguinal approach involves dissecting through the inguinal canal and carries the risk of weakening the inguinal canal. McEvedy’s approach is preferred in the emergency setting when strangulation is suspected. This allows better access to and visualisation of bowel for possible resection. In any approach, care should be taken to avoid injury to the urinary bladder which is often a part of the medial part of the hernial sac.
Repair is either performed by suturing the inguinal ligament to the pectineal ligament using strong non-absorbable sutures or by placing a mesh plug in the femoral ring. With either technique care should be taken to avoid any pressure on the femoral vein.
Traditional "open" repair of incisional hernias can be quite difficult and complicated. The weakened tissue of the abdominal wall is re-incised and a repair is reinforced using a prosthetic mesh. Complications, particularly infection of the incision, frequently occur because of the large size of the incision required to perform this surgery. A mesh infection after this type of hernia repair most frequently requires a complete removal of the mesh and ultimately results in surgical failure. In addition, large incisions required for open repair are commonly associated with significant postoperative pain. Reported recurrence rates after open repair are up to 20% and influenced by mesh size and fixation type.
Laparoscopic incisional hernia repair is a new method of surgery for this condition. The operation is performed using surgical microscopes and specialized instruments. The surgical mesh is placed into the abdomen underneath the abdominal muscles through small incisions to the side of the hernia. In this manner, the weakened tissue of the original hernia is never re-incised to perform the repair, and one can minimize the potential for wound complications such as infections. In addition, performance of the operation through smaller incisions can make the operation less painful and speed recovery. Laparoscopic repair has been demonstrated to be safe and a more resilient repair than open incisional hernia repair.
Treatment for a diaphragmatic hernia usually involves surgery, with acute injuries often repaired with monofilament permanent sutures.