Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There are very few things that can be done to control the spread of bacterial soft rots, and the most effective of them have to do with simply keeping sanitary growing practices.
Storage warehouses should be removed of all plant debris, and the walls and floors disinfected with either formaldehyde or copper sulfate between harvests. Injury to plant tissues should be avoided as much as possible, and the humidity and temperature of the storage facility should be kept low using an adequate ventilation system. These procedures have proven themselves to be very effective in the control of storage soft rot of potato in Wisconsin.
It also helps if plants are planted in well-drained soils, at intervals appropriate for adequate ventilation between plants. Few varieties are resistant to the disease and none are immune, so rotating susceptible plants with non-susceptible ones like cereals is a practice positive to limiting soft rot infection.
The control of specific insect vectors is also a good way of controlling disease spread in the field and in storage. Soil and foliage insecticide treatment helps controls the bugs that frequently cause wounds and disseminate the bacteria.
Cephalosporin use is a risk factor for colonization and infection by VRE, and restriction of cephalosporin usage has been associated with decreased VRE infection and transmission in hospitals. "Lactobacillus rhamnosus" GG (LGG), a strain of "L. rhamnosus", was used successfully for the first time to treat gastrointestinal carriage of VRE. In the US, linezolid is commonly used to treat VRE.
General biocides such as copper, Junction, or ZeroTol offer a potential solution to bacterial wilt of turf grass, however such chemical control ages must be applied after every mowing which may be economically impractical and ultimately phytotoxic. If bacterial wilt is present of the golf course, the best option may be to designate a mower for use on infected greens only in order to prevent the spread of the pathogen to other greens. Other viable methods include simply limiting the number of wounds the plant incurs, thereby limiting entry sites for the pathogen. A simple example would be less frequent mowing. It has also been proven that the disease is most devastating in grass cut to a length of between 1/8 and 3/16 of an inch, but less so in grass over 1/4 of an inch in length or longer, which presents an additional argument for limiting mowing. Another example is limiting sand topdressing as this is also a very abrasive technique which can create small wounds which allow entry of bacteria into the plant.
A major factor complicating the control of Xanthomonas campestris pv. graminis is weather. While it is not possible to control the weather per se, a study found great decreases in pathogen efficacy at temperatures below 20 °C, suggesting that cooling measures may be effective in combating this pathogen.
Ideally, resistant strains of the host plant should be used to control such a plant pathogen, however no resistant cultivars of turf grass have been identified to date. While no completely resistant cultivars exist, golf course owners can find solace in the fact that certain cultivars such as Penncross and Penneagle are more resistant to bacterial wilt and may thus reduce the need for frequent chemical applications and other cultural controls. Researchers are making gains towards the identification of resistant cultivars as evidenced by the finding that variation in genetic linkage groups 1, 4, and 6 accounted for over 43% of resistance among Italian rye grass.
A 1987 study found evidence of a possible biocontrol strategy for bacterial wilt of turf grass. The researchers found that antiserum to Pseudomonas fluorescens or Erwinia herbicola from hosts which have survived infections by the corresponding pathogens is capable of reducing wilt symptoms in turf grass caused by Xanthomonas campestris pv. graminis. The researchers did note, however, that while it is important to ensure the presence of a higher number of competing bacterial cells in order to reduce symptoms, one should take care to avoid over-infecting the host with a new bacterial pathogen.
Further gains towards host resistance were made in 2001 when researchers found that inoculation of meadow fescue during breeding with a single aggressive strain of the bacterial wilt pathogen greatly increased resistance in offspring, thereby demonstrating the potential of selective breeding to reduce bacterial wilt pathogenesis on turf and rye grasses.
Control of the beetle vector is the most effective management technique for disease prevention. Conventional methods of tree thinning and the use of insecticides have been used to combat the western bark beetles, but are only effective before the beetles have colonized and before the fungus has invaded the tree. Other cultural techniques of sanitation and overall health of the oak trees by keeping up with watering, fertilizer or mulch needs, and pruning may help. It is very important to diagnose foamy bark canker disease correctly and promptly in order to manage the disease properly because if a tree is already infected, the removal of the tree is the most effective way to prevent the disease from spreading.
The preventative measure of keeping cats inside in areas with high infection rates can prevent infection. Approved tick treatments for cats can be used but have been shown not to fully prevent tick bites.
The most often used treatments for cytauxzoonosis are imidocarb dipropionate and a combination of atovaquone and azithromycin. Although imidocarb has been used for years, it is not particularly effective. In a large study, only 25% of cats treated with this drug and supportive care survived. 60% of sick cats treated with supportive care and the combination of the anti-malarial drug atovaquone and the antibiotic azithromycin survived infection.
Quick referral to a veterinarian equipped to treat the disease may be beneficial. All infected cats require supportive care, including careful fluids, nutritional support, treatment for complications, and often blood transfusion.
Cats that survive the infection should be kept indoors as they can be persistent carriers after surviving infection and might indirectly infect other cats after being themselves bitten by a vector tick.
On the basis of the laboratory evidence and case reports, amphotericin B has been the traditional mainstay of PAM treatment since the first reported survivor in the United States in 1982.
Treatment has often also used combination therapy with multiple other antimicrobials in addition to amphotericin, such as fluconazole, miconazole, rifampicin and azithromycin. They have shown limited success only when administered early in the course of an infection. Fluconazole is commonly used as it has been shown to have synergistic effects against naegleria when used with amphotericin in-vitro.
While the use of rifampicin has been common, including in all four North American cases of survival, its continued use has been questioned. It only has variable activity in-vitro and it has strong effects on the therapeutic levels of other antimicrobials used by inducing cytochrome p450 pathways.
In 2013, the two most recent successfully treated cases in the United States utilized drug combinations that included the medication miltefosine as well as targeted temperature management to manage brain swelling that is secondary to the infection. As of 2015 there were no data on how well miltefosine is able to reach the central nervous system. As of 2015 the U.S. CDC offered miltefosine to doctors for the treatment of free-living ameobas including naegleria.
Screening for VRE can be accomplished in a number of ways. For inoculating peri-rectal/anal swabs or stool specimens directly, one method uses bile esculin azide agar plates containing 6 µg/ml of vancomycin. Black colonies should be identified as an enterococcus to species level and further confirmed as vancomycin resistant by an MIC method before reporting as VRE.
Vancomycin resistance can be determined for enterococcal colonies available in pure culture by inoculating a suspension of the organism onto a commercially available brain heart infusion agar (BHIA) plate containing 6 µg/ml vancomycin. The National Committee for Clinical Laboratory Standards (NCCLS) recommends performing a vancomycin MIC test and also motility and pigment production tests to distinguish species with acquired resistance (vanA and vanB) from those with vanC intrinsic resistance.
Subcutaneous cysts may be surgically opened to remove less mature bots. If more matured, cysts may be opened and "cuterebra" may be removed using mosquito forceps. Covering the pore in petroleum jelly may aide in removal. If larvae are discovered within body tissues, rather than subcutaneously, surgical removal is the only means of treatment. Ivermectin may be administered with corticosteroids to halt larval migration in cats presenting with respiratory cuterebriasis, but this is not approved for use in cats. There is not yet a known cure for cerebrospinal cuterebriasis.
Eye and skin infections caused by "Acanthamoeba spp." are generally treatable. Topical use of 0.1% propamidine isethionate (Brolene) plus neomycin-polymyxin B-gramicidin ophthalmic solution has been a successful approach; keratoplasty is often necessary in severe infections. Although most cases of brain (CNS) infection with "Acanthamoeba" have resulted in death, patients have recovered from the infection with proper treatment.
Michael Beach, a recreational waterborne illness specialist for the Centers for Disease Control and Prevention, stated in remarks to the Associated Press that wearing of nose-clips to prevent insufflation of contaminated water would be effective protection against contracting PAM, noting that "You'd have to have water going way up in your nose to begin with".
Advice stated in the press release from Taiwan's Centers for Disease Control recommended people prevent fresh water from entering the nostrils and avoid putting their heads down into fresh water or stirring mud in the water with feet. When starting to suffer from fever, headache, nausea, or vomiting subsequent to any kind of exposure to fresh water even if the belief in none of the fresh water has traveled through nostrils, people with such conditions should be carried to hospital quickly and make sure doctors are well-informed about the history of exposure to fresh water.
Growth of the bacteria is possible between 32–90 °F, with the most ideal conditions between 70–80 °F. Post-harvest storage and transportation is difficult for tropical and other warm environments when the air is not properly ventilated during these processes. Higher temperatures and high humidity are ideal growing conditions for the bacteria making ventilation a big priority when trying to combat this disease.
The recommended treatment for people outside the United States is albendazole combined with ivermectin. A combination of diethylcarbamazine and albendazole is also effective. Side effects of the drugs include nausea, vomiting, and headaches. All of these treatments are microfilaricides; they have no effect on the adult worms. While the drugs are critical for treatment of the individual, proper hygiene is also required.
Different trials were made to use the known drug at its maximum capacity in absence of new drugs. In a study from India, it was shown that a formulation of albendazole had better anti-filarial efficacy than albendazole itself.
In 2003, the common antibiotic doxycycline was suggested for treating elephantiasis. Filarial parasites have symbiotic bacteria in the genus "Wolbachia", which live inside the worm and seem to play a major role in both its reproduction and the development of the disease. This drug has shown signs of inhibiting the reproduction of the bacteria, further inducing sterility.
Clinical trials in June 2005 by the Liverpool School of Tropical Medicine reported an eight-week course almost completely eliminated microfilaraemia.
The Infectious Disease Society of America (IDSA) recommends treating uncomplicated methicillin resistant staph aureus (MRSA) bacteremia with a 14-day course of intravenous vancomycin. Uncomplicated bacteremia is defined as having positive blood cultures for MRSA, but having no evidence of endocarditis, no implanted prostheses, negative blood cultures after 2–4 days of treatment, and signs of clinical improvement after 72 hrs.
The antibiotic treatment of choice for streptococcal and enteroccal infections differs by species. However, it is important to look at the antibiotic resistance pattern for each species from the blood culture to better treat infections caused by resistant organisms.
Currently, there is no vaccine against human granulocytic anaplasmosis, so antibiotics are the only form of treatment. The best way to prevent HGA is to prevent getting tick bites.
The presence of bacteria in the blood almost always requires treatment with antibiotics. This is because there are high mortality rates from progression to sepsis if antibiotics are delayed.
The treatment of bacteremia should begin with empiric antibiotic coverage. Any patient presenting with signs or symptoms of bacteremia or a positive blood culture should be started on intravenous antibiotics. The choice of antibiotic is determined by the most likely source of infection and by the characteristic organisms that typically cause that infection. Other important considerations include the patient's past history of antibiotic use, the severity of the presenting symptoms, and any allergies to antibiotics. Empiric antibiotics should be narrowed, preferably to a single antibiotic, once the blood culture returns with a particular bacteria that has been isolated.
Early antibiotic treatment of anthrax is essential; delay significantly lessens chances for survival.
Treatment for anthrax infection and other bacterial infections includes large doses of intravenous and oral antibiotics, such as fluoroquinolones (ciprofloxacin), doxycycline, erythromycin, vancomycin, or penicillin. FDA-approved agents include ciprofloxacin, doxycycline, and penicillin.
In possible cases of pulmonary anthrax, early antibiotic prophylaxis treatment is crucial to prevent possible death.
In recent years, many attempts have been made to develop new drugs against anthrax, but existing drugs are effective if treatment is started soon enough.
Doxycycline is the treatment of choice. If anaplasmosis is suspected, treatment should not be delayed while waiting for a definitive laboratory confirmation, as prompt doxycycline therapy has been shown to improve outcomes. Presentation during early pregnancy can complicate treatment. Doxycycline compromises dental enamel during development. Although rifampin is indicated for post-delivery pediatric and some doxycycline-allergic patients, it is teratogenic. Rifampin is contraindicated during conception and pregnancy.
If the disease is not treated quickly, sometimes before the diagnosis, the person has a high chance of mortality. Most people make a complete recovery, though some people are intensively cared for after treatment. A reason for a person needing intensive care is if the person goes too long without seeing a doctor or being diagnosed. The majority of people, though, make a complete recovery with no residual damage.
Bacterial wilt of turfgrass is the only known bacterial disease of turf. The causal agent is the Gram negative bacterium Xanthomonas campestris pv. graminis. The first case of bacterial wilt of turf was reported in a cultivar of creeping bentgrass known as Toronto or C-15, which is found throughout the midwestern United States. Until the causal agent was identified in 1984, the disease was referred to simply as C-15 decline. This disease is almost exclusively found on putting greens at golf courses where extensive mowing creates wounds in the grass which the pathogen uses in order to enter the host and cause disease.
When infection attacks the body, "anti-infective" drugs can suppress the infection. Several broad types of anti-infective drugs exist, depending on the type of organism targeted; they include antibacterial (antibiotic; including antitubercular), antiviral, antifungal and antiparasitic (including antiprotozoal and antihelminthic) agents. Depending on the severity and the type of infection, the antibiotic may be given by mouth or by injection, or may be applied topically. Severe infections of the brain are usually treated with intravenous antibiotics. Sometimes, multiple antibiotics are used in case there is resistance to one antibiotic. Antibiotics only work for bacteria and do not affect viruses. Antibiotics work by slowing down the multiplication of bacteria or killing the bacteria. The most common classes of antibiotics used in medicine include penicillin, cephalosporins, aminoglycosides, macrolides, quinolones and tetracyclines.
Not all infections require treatment, and for many self-limiting infections the treatment may cause more side-effects than benefits. Antimicrobial stewardship is the concept that healthcare providers should treat an infection with an antimicrobial that specifically works well for the target pathogen for the shortest amount of time and to only treat when there is a known or highly suspected pathogen that will respond to the medication.
In May 2009, Human Genome Sciences submitted a biologic license application (BLA, permission to market) for its new drug, raxibacumab (brand name ABthrax) intended for emergency treatment of inhaled anthrax. On 14 December 2012, the US Food and Drug Administration approved raxibacumab injection to treat inhalational anthrax. Raxibacumab is a monoclonal antibody that neutralizes toxins produced by "B. anthracis". On March, 2016, FDA approved a second anthrax treatment using a monoclonal antibody which neutralizes the toxins produced by "B. anthracis". Obiltoxaximab is approved to treat inhalational anthrax in conjunction with appropriate antibacterial drugs, and for prevention when alternative therapies are not available or appropriate.
If infection occurs or is suspected, treatment is generally with the antibiotics streptomycin or gentamicin. Doxycycline was previously used. Gentamicin may be easier to obtain than streptomycin. There is also tentative evidence to support the use of fluoroquinolones.
Throughout history treatment relied primarily on β-lactam antibiotics. In the 1960s nearly all strains of "S. pneumoniae" were susceptible to penicillin, but more recently there has been an increasing prevalence of penicillin resistance especially in areas of high antibiotic use. A varying proportion of strains may also be resistant to cephalosporins, macrolides (such as erythromycin), tetracycline, clindamycin and the quinolones. Penicillin-resistant strains are more likely to be resistant to other antibiotics. Most isolates remain susceptible to vancomycin, though its use in a β-lactam-susceptible isolate is less desirable because of tissue distribution of the drug and concerns of development of vancomycin resistance. More advanced beta-lactam antibiotics (cephalosporins) are commonly used in combination with other drugs to treat meningitis and community-acquired pneumonia. In adults recently developed fluoroquinolones such as levofloxacin and moxifloxacin are often used to provide empiric coverage for patients with pneumonia, but in parts of the world where these drugs are used to treat tuberculosis resistance has been described.
Susceptibility testing should be routine with empiric antibiotic treatment guided by resistance patterns in the community in which the organism was acquired. There is currently debate as to how relevant the results of susceptibility testing are to clinical outcome. There is slight clinical evidence that penicillins may act synergistically with macrolides to improve outcomes.
Filarial diseases in humans offer prospects for elimination by means of vermicidal treatment. If the human link in the chain of infection can be broken, then notionally the disease could be wiped out in a season. In practice it is not quite so simple, and there are complications in that multiple species overlap in certain regions and double infections are common. This creates difficulties for routine mass treatment because people with onchocerciasis in particular react badly to treatment for lymphatic filariasis.
Treatments involve antibiotics that cover for "Pseudomonas aeruginosa". Antipseudomonal penicillins, aminoglycosides, fluoroquinolones, third generation cephalosporins or aztreonam can be given. Usually, the antibiotics are changed according to the culture and sensitivity result. In patients with very low white blood cell counts, Granulocyte-macrophage colony-stimulating factor may be given. Depending on the causal agents, antivirals or antifungals can be added.
Surgery will be needed if there is extensive necrosis not responding to medical treatments.
Supportive care must be provided to animals that have clinical signs. Subcutaneous or intravenous fluids are given to dehydrated animals, and severely anemic dogs may require a blood transfusion. Treatment for ehrlichiosis involves the use of antibiotics such as tetracycline or doxycycline for a period of at least six to eight weeks; response to the drugs may take one month. Treatment with macrolide antibiotics like clarithromycin and azithromycin is being studied. In addition, steroids may be indicated in severe cases in which the level of platelets is so low that the condition is life-threatening.