Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The first approach, which is the best approach at an effective management practice would be to eradicate or severely damage the Mountain and Cherry Leafhopper population because the leafhoppers are the number one vectors for this pathogen. To do this, pesticides (i.e. acephate, bifenthrin, cyfluthrin) could be applied or biological control (predators of the leafhopper) could be used. There should be a pre-season application of control measures as well as a post-season application. This is to maximize the effort at controlling both types of leafhoppers (Cherry and Mountain), thus cutting down the starting inoculum at both stages in the life cycle.
There are numerous steps one has to take to try to manage the disease as best as possible. The aim is at prevention because once the pathogen reaches the cherry trees, disease will surely ensue and there is no cure or remedy to prevent the loss of fruit production as well as the ultimate death of the tree.
There are very few things that can be done to control the spread of bacterial soft rots, and the most effective of them have to do with simply keeping sanitary growing practices.
Storage warehouses should be removed of all plant debris, and the walls and floors disinfected with either formaldehyde or copper sulfate between harvests. Injury to plant tissues should be avoided as much as possible, and the humidity and temperature of the storage facility should be kept low using an adequate ventilation system. These procedures have proven themselves to be very effective in the control of storage soft rot of potato in Wisconsin.
It also helps if plants are planted in well-drained soils, at intervals appropriate for adequate ventilation between plants. Few varieties are resistant to the disease and none are immune, so rotating susceptible plants with non-susceptible ones like cereals is a practice positive to limiting soft rot infection.
The control of specific insect vectors is also a good way of controlling disease spread in the field and in storage. Soil and foliage insecticide treatment helps controls the bugs that frequently cause wounds and disseminate the bacteria.
Plant varieties that are resistant to "Armillaria" or species are resistant to other environmental or biological stressors. If the infected area has been cleared of trees, plants that are not vulnerable to the disease should be planted for five or so years until "Armillaria" is eradicated. Stump removal is also an effective management tool but can be expensive. Another way to reduce susceptibility is to maintain plant health by regular fertilization (if needed), watering during droughts, and trying not to create wounds on the plant. Fumigation can also be used to reduce the amount of inoculum.
Control of the beetle vector is the most effective management technique for disease prevention. Conventional methods of tree thinning and the use of insecticides have been used to combat the western bark beetles, but are only effective before the beetles have colonized and before the fungus has invaded the tree. Other cultural techniques of sanitation and overall health of the oak trees by keeping up with watering, fertilizer or mulch needs, and pruning may help. It is very important to diagnose foamy bark canker disease correctly and promptly in order to manage the disease properly because if a tree is already infected, the removal of the tree is the most effective way to prevent the disease from spreading.
General biocides such as copper, Junction, or ZeroTol offer a potential solution to bacterial wilt of turf grass, however such chemical control ages must be applied after every mowing which may be economically impractical and ultimately phytotoxic. If bacterial wilt is present of the golf course, the best option may be to designate a mower for use on infected greens only in order to prevent the spread of the pathogen to other greens. Other viable methods include simply limiting the number of wounds the plant incurs, thereby limiting entry sites for the pathogen. A simple example would be less frequent mowing. It has also been proven that the disease is most devastating in grass cut to a length of between 1/8 and 3/16 of an inch, but less so in grass over 1/4 of an inch in length or longer, which presents an additional argument for limiting mowing. Another example is limiting sand topdressing as this is also a very abrasive technique which can create small wounds which allow entry of bacteria into the plant.
A major factor complicating the control of Xanthomonas campestris pv. graminis is weather. While it is not possible to control the weather per se, a study found great decreases in pathogen efficacy at temperatures below 20 °C, suggesting that cooling measures may be effective in combating this pathogen.
Ideally, resistant strains of the host plant should be used to control such a plant pathogen, however no resistant cultivars of turf grass have been identified to date. While no completely resistant cultivars exist, golf course owners can find solace in the fact that certain cultivars such as Penncross and Penneagle are more resistant to bacterial wilt and may thus reduce the need for frequent chemical applications and other cultural controls. Researchers are making gains towards the identification of resistant cultivars as evidenced by the finding that variation in genetic linkage groups 1, 4, and 6 accounted for over 43% of resistance among Italian rye grass.
A 1987 study found evidence of a possible biocontrol strategy for bacterial wilt of turf grass. The researchers found that antiserum to Pseudomonas fluorescens or Erwinia herbicola from hosts which have survived infections by the corresponding pathogens is capable of reducing wilt symptoms in turf grass caused by Xanthomonas campestris pv. graminis. The researchers did note, however, that while it is important to ensure the presence of a higher number of competing bacterial cells in order to reduce symptoms, one should take care to avoid over-infecting the host with a new bacterial pathogen.
Further gains towards host resistance were made in 2001 when researchers found that inoculation of meadow fescue during breeding with a single aggressive strain of the bacterial wilt pathogen greatly increased resistance in offspring, thereby demonstrating the potential of selective breeding to reduce bacterial wilt pathogenesis on turf and rye grasses.
Fumagillin has been used in the treatment.
Another agent used is albendazole.
Various methods are applied.
- The most effective method is to plant peach trees against a house wall under an overhanging roof, possibly covered by a mat during the winter, to keep winter rain from the buds before they burst (and incidentally to delay blossoming until spring frosts are over), until the temperature exceeds in the spring, deactivating the fungus.
- Commercially, spraying the leaves with fungicides is the most common control method. The toxicity of these fungicides means they are not legally available to noncommercial growers in some countries. Spraying should be done in the winter well before budding. If trees are not sprayed early enough, treatment is ineffective. Copper-based mixtures (such as Bordeaux mixture) and lime sulfurs are two fungicides commonly used.
- Peach cultivars can be planted which show some resistance to peach leaf curl, or at least regenerate rapidly, such as Peach 'Benedicte'. No similarly resistant nectarine cultivar is yet known.
If a plant appears to have signs of leaf curl in a particular year, the disease will take its course, but precautions can be taken to sustain the tree or maximize crop yield: for example, treating with nitrogen and excess water to minimize stress on the tree; applying greasebands around the trunk to protect from insect infestation; and thinning the fruit. It is unclear whether removal of infected leaves from the tree is beneficial. Removing the infected leaves and fruit after they fall to the ground is sometimes also suggested but superfluous if, in the following winter, fungicides or rain protection are applied.
The bacteria can survive in the rhizosphere of other crops such as tomato, carrots, sweet potato, radish, and squash as well as weed plants like lupin and pigweed, so it is very hard to get rid of it completely. When it is known that the bacterium is present in the soil, planting resistant varieties can be the best defense against the disease. Many available beet cultivars are resistant to "Pectobacterium carotovorum" subsp. "betavasculorum", and some examples are provided in the corresponding table. A comprehensive list is maintained by the USDA on the Germplasm Resources Information Network.
Even though some genes associated with root defense response have been identified, the specific mechanism of resistance is unknown, and it is currently being researched.
Subcutaneous cysts may be surgically opened to remove less mature bots. If more matured, cysts may be opened and "cuterebra" may be removed using mosquito forceps. Covering the pore in petroleum jelly may aide in removal. If larvae are discovered within body tissues, rather than subcutaneously, surgical removal is the only means of treatment. Ivermectin may be administered with corticosteroids to halt larval migration in cats presenting with respiratory cuterebriasis, but this is not approved for use in cats. There is not yet a known cure for cerebrospinal cuterebriasis.
The primary method for controlling the incidence of gaffkaemia is improved hygiene. Other measures include limiting damage to the exoskeleton (preventing the bacterium's entry), reducing the water temperature, and reducing the stocking density. Antibiotics may be effective against the bacterium, but only tetracycline is currently approved by the U.S Food and Drug Administration for use in American lobsters.
Fungicidal agents such as azadirachtin and phytoallexin have been used against some muscardine pathogens. Silkworm breeders dust their cages with slaked lime to discourage fungal growth. In India a dust of chaff soaked in formalin is applied to the larvae.
Isosporiasis is treated with prescription antibiotics, the treatment of choice is trimethoprim-sulfamethoxazole.
Currently, no therapeutic drugs are prescribed for the disease. Therefore, prevention is the sole mode of treatment. This disease can only be prevented by quarantining sick birds and preventing migration of birds around the house, causing them to spread the disease. Deworming of birds with anthelmintics can reduce exposure to the cecal nematodes that carry the protozoan. Good management of the farm, including immediate quarantine of infected birds and sanitation, is the main useful strategy for controlling the spread of the parasitic contamination. The only drug used for the control (prophylaxis) in the United States is nitarsone at 0.01875% of feed until 5 days before marketing. Natustat and nitarsone were shown to be effective therapeutic drugs. Nifurtimox, a compound with known antiprotozoal activity, was demonstrated to be significantly effective at 300–400 ppm, and well tolerated by turkeys.
The standard of care is administration of antifilarial drugs, most commonly Ivermectin or diethyl-carbamazine (DEC). The most efficacious dose in all nematode and parasitic infections is 200 µg/kg of ivermectin. There has also been other various anthelminthic drugs used, such as mebendazole, levamisole, albendazole and thiabendazole. In worst-case scenarios, surgery may be necessary to remove nematodes from the abdomen or chest. However, mild cases usually do not require treatment.
In affected orchards, new infections can be reduced by removing leaf litter and trimmings containing infected tissue from the orchard and incinerating them. This will reduce the amount of new ascospores released in the spring. Additionally, scab lesions on woody tissue can be excised from the tree if possible and similarly destroyed.
Chemical controls can include a variety of compounds. Benzimidazole fungicides, e.g., Benlate (now banned in many countries due to its containing the harmful chemical benzene) work well but resistance can arise quickly. A number of other chemical classes including sterol inhibitors such as Nova 40, and strobilurins such as Sovran are used extensively; however, some of these are slowly being phased out because of resistance problems.
Contact fungicides not prone to resistance, such as Captan, are viable choices. Potassium bicarbonate is an effective fungicide against apple scab, as well as powdery mildew, and is allowed for use in organic farming. Copper and Bordeaux mixture are traditional controls but are less effective than chemical fungicides, and can cause russeting of the fruit. Wettable sulfur also provides some control. Timing of application and concentration varies between compounds.
An apple scab prognostic model called RIMpro was developed by Marc Trapman, which numerically grades infection risk and can serve as a warning system. It allows better targeted spraying. Parameter for calculation are wetness of leaves, amount of rain fall and temperature.
Fifteen genes have been found in apple cultivars that confer resistance against apple scab. Researchers hope to use cisgenic techniques to introduce these genes into commercial cultivars and therefore create new resistant cultivars. This can be done through conventional breeding but would take over 50 years to achieve.
Avoiding food or water that may be contaminated with stool can help prevent the infection of "Cystoisospora" (Isosporiasis). Good hand-washing, and personal-hygiene practices should be used as well. One should wash their hands with soap and warm water after using the toilet, changing diapers, and before handling food (CDC.gov). It is also important to teach children the importance of washing their hands, and how to properly wash their hands.
Some bacteriophages, viruses that infect bacteria, have been used as effective controls of bacterial diseases in laboratory experiments. This relatively new technology is a promising control method that is currently being researched. Bacteriophages are extremely host-specific, which makes them environmentally sound as they will not destroy other, beneficial soil microorganisms. Some bacteriophages identified as effective controls of "Pectobacterium carotovorum" subsp. "betavasculorum" are the strains ΦEcc2 ΦEcc3 ΦEcc9 ΦEcc14. When mixed with a fertilizer and applied to inoculated calla lily bulbs in a greenhouse, they reduced diseased tissue by 40 to 70%. ΦEcc3 appeared to be the most effective, reducing the percent of diseased plants from 30 to 5% in one trial, to 50 to 15% in a second trial. They have also been used successfully to reduce rotting in lettuce caused by "Pectobacterium carotovorum" subsp. "carotovorum", a different bacterial species closely related to the one that causes beet vascular necrosis.
While it is more difficult to apply bacteriophages in a field setting, it is not impossible, and laboratory and greenhouse trials are showing bacteriophages to potentially be a very effective control mechanism. However, there are a few obstacles to surmount before field trials can begin. A large problem is that they are damaged by UV light, so applying the phage mixture during the evening will help promote its viability. Also, providing the phages with susceptible non-pathogenic bacteria to replicate with can ensure there is adequate persistence until the bacteriophages can spread to the targeted bacteria. The bacteriophages are unable to kill all the bacteria, because they need a dense population of bacteria in order to effectively infect and spread, so while the phages were able to decrease the number of diseased plants by up to 35%, around 2,000 Colony Forming Units per milliliter (an estimate of living bacteria cells) were able to survive the treatment. Lastly, the use of these bacteriophages places strong selection on the host bacteria, which causes a high probability of developing resistance to the attacking bacteriophage. Thus it is recommended that multiple strains of the bacteriophage be used in each application so the bacteria do not have a chance to develop resistance to any one strain.
Surgical removal or treatment with albendazole or ivermectin is recommended.
The most prescribed treatment for gnathostomiasis is surgical removal of the larvae but this is only effective when the worms are located in an accessible location. In addition to surgical excision, albendazole and ivermectin have been noted in their ability to eliminate the parasite. Albendazole is recommended to be administered at 400 mg daily for 21 days as an adjunct to surgical excision, while ivermectin is better tolerated as a single dose. Ivermectin can also serve as a replacement for those that can’t handle albendazole 200 ug/kg p.o. as a single dose. However, ivermectin has been shown to be less effective then albendazole.
For alveolar echinococcosis, surgical removal of cysts combined with chemotherapy (using albendazole and/or mebendazole) for up to two years after surgery is the only sure way to completely cure the disease. However, in inoperable cases, chemotherapy by itself can also be used. In treatment using just chemotherapy, one could use either mebendazole in three doses or albendazole in two doses. Since chemotherapy on its own is not guaranteed to completely rid the patient of disease, patients are often kept on the drugs for extended periods of times (i.e. more than 6 months, years). In addition to surgery and chemotherapy, liver transplants are being looked into as a form of treatment for alveolar echinococcosis although it is seen as incredibly risky since it often leads to echinococcosis re-infection in the patient afterwards.
For simple cases of cystic echinococcosis, the most common form of treatment is open surgical removal of the cysts combined with chemotherapy using albendazole and/or mebendazole before and after surgery. However, if there are cysts in multiple organs or tissues, or the cysts are in risky locations, surgery becomes impractical. For inoperable cases such as these, chemotherapy and/or PAIR (puncture-aspiration-injection-reaspiration) become alternative options of treatment. In the case of alternative treatment using just chemotherapy, albendazole is preferred twice a day for 1–5 months. An alternative to albendazole is mebendazole for at least 3 to 6 months. The other alternative to surgery is PAIR with chemotherapy. PAIR is a minimally invasive procedure that involves three steps: puncture and needle aspiration of the cyst, injection of a scolicidal solution for 20–30 min, and cyst-re-aspiration and final irrigation. Patients who undergo PAIR typically take albendazole or mebendazole from 7 days before the procedure until 28 days after the procedure. While open surgery still remains as the standard for cystic echinococcosis treatment, there have been a number of studies that suggest that PAIR with chemotherapy is more effective than surgery in terms of disease recurrence, and morbidity and mortality. In addition to the three above mentioned treatments, there is currently research and studies looking at new treatment involving percutaneous thermal ablation (PTA) of the germinal layer in the cyst by means of a radiofrequency ablation device. This form of treatment is still relatively new and requires much more testing before being widely used. An alternative to open surgery is laparoscopic surgery, which provides excellent cure rates with minimal morbidity and mortality.
Parasitic worms and nematodes regulate many immune pathways of their host in order to increase their chances of survival. For example, molecules secreted by "Acanthocheilonema vitae" actually limit host effective immune mechanisms. These molecules are called excretory-secretory products. An effective excretory-secretory product released from "Acanthochelionema vitae" is called ES-62, which can affect multiple immune system cell types. ES-62 has anti-inflammatory effects when subjected to mice. The anti-inflammatory effect occurs because of a phosphorylcholine (PC)-containing moiety and signal transduction. More research needs to be completed; however there is some evidence that "Acanthocheilonema vitae" may have anti-inflammatory effects, and should be researched further.
Various strategies targeting the mollusc and avian hosts of schistosomes, have been used by lakeside residents in recreational areas of North America to deal with outbreaks of swimmer's itch. In Michigan, for decades, authorities used copper sulfate as a molluscicide to reduce snail host populations and thereby the incidence of swimmer's itch. The results with this agent have been inconclusive, possibly because:
- Snails become tolerant
- Local water chemistry reduces the molluscicide's efficacy
- Local currents diffuse it
- Adjacent snail populations repopulate a treated area
More importantly, perhaps, copper sulfate is toxic to more than just molluscs, and the effects of its use on aquatic ecosystems are not well understood.
Another method targeting the snail host, mechanical disturbance of snail habitat, has been also tried in some areas of North America and Lake Annecy in France, with promising results. Some work in Michigan suggests that administering praziquantel to hatchling waterfowl can reduce local swimmer's itch rates in humans. Work on schistosomiasis showed that water-resistant topical applications of the common insect repellent DEET prevented schistosomes from penetrating the skin of mice. Public education of risk factors, a good alternative to the aforementioned interventionist strategies, can also reduce human exposure to cercariae.
Growth of the bacteria is possible between 32–90 °F, with the most ideal conditions between 70–80 °F. Post-harvest storage and transportation is difficult for tropical and other warm environments when the air is not properly ventilated during these processes. Higher temperatures and high humidity are ideal growing conditions for the bacteria making ventilation a big priority when trying to combat this disease.
There is antibiotic therapy for secondary infections caused by the parasite. However, surgical removal is usually the only way to get rid of the parasites.