Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Fumagillin has been used in the treatment.
Another agent used is albendazole.
Subcutaneous cysts may be surgically opened to remove less mature bots. If more matured, cysts may be opened and "cuterebra" may be removed using mosquito forceps. Covering the pore in petroleum jelly may aide in removal. If larvae are discovered within body tissues, rather than subcutaneously, surgical removal is the only means of treatment. Ivermectin may be administered with corticosteroids to halt larval migration in cats presenting with respiratory cuterebriasis, but this is not approved for use in cats. There is not yet a known cure for cerebrospinal cuterebriasis.
When infection attacks the body, "anti-infective" drugs can suppress the infection. Several broad types of anti-infective drugs exist, depending on the type of organism targeted; they include antibacterial (antibiotic; including antitubercular), antiviral, antifungal and antiparasitic (including antiprotozoal and antihelminthic) agents. Depending on the severity and the type of infection, the antibiotic may be given by mouth or by injection, or may be applied topically. Severe infections of the brain are usually treated with intravenous antibiotics. Sometimes, multiple antibiotics are used in case there is resistance to one antibiotic. Antibiotics only work for bacteria and do not affect viruses. Antibiotics work by slowing down the multiplication of bacteria or killing the bacteria. The most common classes of antibiotics used in medicine include penicillin, cephalosporins, aminoglycosides, macrolides, quinolones and tetracyclines.
Not all infections require treatment, and for many self-limiting infections the treatment may cause more side-effects than benefits. Antimicrobial stewardship is the concept that healthcare providers should treat an infection with an antimicrobial that specifically works well for the target pathogen for the shortest amount of time and to only treat when there is a known or highly suspected pathogen that will respond to the medication.
The first approach, which is the best approach at an effective management practice would be to eradicate or severely damage the Mountain and Cherry Leafhopper population because the leafhoppers are the number one vectors for this pathogen. To do this, pesticides (i.e. acephate, bifenthrin, cyfluthrin) could be applied or biological control (predators of the leafhopper) could be used. There should be a pre-season application of control measures as well as a post-season application. This is to maximize the effort at controlling both types of leafhoppers (Cherry and Mountain), thus cutting down the starting inoculum at both stages in the life cycle.
There is antibiotic therapy for secondary infections caused by the parasite. However, surgical removal is usually the only way to get rid of the parasites.
The primary method for controlling the incidence of gaffkaemia is improved hygiene. Other measures include limiting damage to the exoskeleton (preventing the bacterium's entry), reducing the water temperature, and reducing the stocking density. Antibiotics may be effective against the bacterium, but only tetracycline is currently approved by the U.S Food and Drug Administration for use in American lobsters.
There are numerous steps one has to take to try to manage the disease as best as possible. The aim is at prevention because once the pathogen reaches the cherry trees, disease will surely ensue and there is no cure or remedy to prevent the loss of fruit production as well as the ultimate death of the tree.
Currently, no therapeutic drugs are prescribed for the disease. Therefore, prevention is the sole mode of treatment. This disease can only be prevented by quarantining sick birds and preventing migration of birds around the house, causing them to spread the disease. Deworming of birds with anthelmintics can reduce exposure to the cecal nematodes that carry the protozoan. Good management of the farm, including immediate quarantine of infected birds and sanitation, is the main useful strategy for controlling the spread of the parasitic contamination. The only drug used for the control (prophylaxis) in the United States is nitarsone at 0.01875% of feed until 5 days before marketing. Natustat and nitarsone were shown to be effective therapeutic drugs. Nifurtimox, a compound with known antiprotozoal activity, was demonstrated to be significantly effective at 300–400 ppm, and well tolerated by turkeys.
There are very few things that can be done to control the spread of bacterial soft rots, and the most effective of them have to do with simply keeping sanitary growing practices.
Storage warehouses should be removed of all plant debris, and the walls and floors disinfected with either formaldehyde or copper sulfate between harvests. Injury to plant tissues should be avoided as much as possible, and the humidity and temperature of the storage facility should be kept low using an adequate ventilation system. These procedures have proven themselves to be very effective in the control of storage soft rot of potato in Wisconsin.
It also helps if plants are planted in well-drained soils, at intervals appropriate for adequate ventilation between plants. Few varieties are resistant to the disease and none are immune, so rotating susceptible plants with non-susceptible ones like cereals is a practice positive to limiting soft rot infection.
The control of specific insect vectors is also a good way of controlling disease spread in the field and in storage. Soil and foliage insecticide treatment helps controls the bugs that frequently cause wounds and disseminate the bacteria.
Yersiniosis is usually self-limiting and does not require treatment. For severe infections (sepsis, focal infection) especially if associated with immunosuppression, the recommended regimen includes doxycycline in combination with an aminoglycoside. Other antibiotics active against "Y. enterocolitica" include trimethoprim-sulfamethoxasole, fluoroquinolones, ceftriaxone, and chloramphenicol. "Y. enterocolitica" is usually resistant to penicillin G, ampicillin, and cephalotin due to beta-lactamase production.
Control of the beetle vector is the most effective management technique for disease prevention. Conventional methods of tree thinning and the use of insecticides have been used to combat the western bark beetles, but are only effective before the beetles have colonized and before the fungus has invaded the tree. Other cultural techniques of sanitation and overall health of the oak trees by keeping up with watering, fertilizer or mulch needs, and pruning may help. It is very important to diagnose foamy bark canker disease correctly and promptly in order to manage the disease properly because if a tree is already infected, the removal of the tree is the most effective way to prevent the disease from spreading.
Surgical removal or treatment with albendazole or ivermectin is recommended.
The most prescribed treatment for gnathostomiasis is surgical removal of the larvae but this is only effective when the worms are located in an accessible location. In addition to surgical excision, albendazole and ivermectin have been noted in their ability to eliminate the parasite. Albendazole is recommended to be administered at 400 mg daily for 21 days as an adjunct to surgical excision, while ivermectin is better tolerated as a single dose. Ivermectin can also serve as a replacement for those that can’t handle albendazole 200 ug/kg p.o. as a single dose. However, ivermectin has been shown to be less effective then albendazole.
There is no cure for polioencephalitis so prevention is essential. Many people that become infected will not develop symptoms and their prognosis is excellent. However, the prognosis is dependent on the amount of cellular damage done by the virus and the area of the brain affected. Many people that develop more severe symptoms can have lifelong disabilities or it can lead to death. Supportive treatments include bed rest, pain relievers, and a nutritious diet. Many drugs have been used to treat psychiatric symptoms such as Clonazepam for insomnia and Desvenlafaxine or Citalopram for depressed mood.
Ticks should be removed promptly and carefully with tweezers and by applying gentle, steady traction. The tick's body should not be crushed when it is removed and the tweezers should be placed as close to the skin as possible to avoid leaving tick mouthparts in the skin; mouthparts left in the skin can allow secondary infections. Ticks should not be removed with bare hands. Hands should be protected by gloves and/or tissues and thoroughly washed with soap and water after the removal process.
A match or flame should not be used to remove a tick. This method, once thought safe, can cause the tick to regurgitate, expelling any disease it may be carrying into the bite wound.
The drug of choice to treat paragonimiasis is praziquantel, although bithionol may also be used.
General biocides such as copper, Junction, or ZeroTol offer a potential solution to bacterial wilt of turf grass, however such chemical control ages must be applied after every mowing which may be economically impractical and ultimately phytotoxic. If bacterial wilt is present of the golf course, the best option may be to designate a mower for use on infected greens only in order to prevent the spread of the pathogen to other greens. Other viable methods include simply limiting the number of wounds the plant incurs, thereby limiting entry sites for the pathogen. A simple example would be less frequent mowing. It has also been proven that the disease is most devastating in grass cut to a length of between 1/8 and 3/16 of an inch, but less so in grass over 1/4 of an inch in length or longer, which presents an additional argument for limiting mowing. Another example is limiting sand topdressing as this is also a very abrasive technique which can create small wounds which allow entry of bacteria into the plant.
A major factor complicating the control of Xanthomonas campestris pv. graminis is weather. While it is not possible to control the weather per se, a study found great decreases in pathogen efficacy at temperatures below 20 °C, suggesting that cooling measures may be effective in combating this pathogen.
Ideally, resistant strains of the host plant should be used to control such a plant pathogen, however no resistant cultivars of turf grass have been identified to date. While no completely resistant cultivars exist, golf course owners can find solace in the fact that certain cultivars such as Penncross and Penneagle are more resistant to bacterial wilt and may thus reduce the need for frequent chemical applications and other cultural controls. Researchers are making gains towards the identification of resistant cultivars as evidenced by the finding that variation in genetic linkage groups 1, 4, and 6 accounted for over 43% of resistance among Italian rye grass.
A 1987 study found evidence of a possible biocontrol strategy for bacterial wilt of turf grass. The researchers found that antiserum to Pseudomonas fluorescens or Erwinia herbicola from hosts which have survived infections by the corresponding pathogens is capable of reducing wilt symptoms in turf grass caused by Xanthomonas campestris pv. graminis. The researchers did note, however, that while it is important to ensure the presence of a higher number of competing bacterial cells in order to reduce symptoms, one should take care to avoid over-infecting the host with a new bacterial pathogen.
Further gains towards host resistance were made in 2001 when researchers found that inoculation of meadow fescue during breeding with a single aggressive strain of the bacterial wilt pathogen greatly increased resistance in offspring, thereby demonstrating the potential of selective breeding to reduce bacterial wilt pathogenesis on turf and rye grasses.
There is usually an indication for a specific identification of an infectious agent only when such identification can aid in the treatment or prevention of the disease, or to advance knowledge of the course of an illness prior to the development of effective therapeutic or preventative measures. For example, in the early 1980s, prior to the appearance of AZT for the treatment of AIDS, the course of the disease was closely followed by monitoring the composition of patient blood samples, even though the outcome would not offer the patient any further treatment options. In part, these studies on the appearance of HIV in specific communities permitted the advancement of hypotheses as to the route of transmission of the virus. By understanding how the disease was transmitted, resources could be targeted to the communities at greatest risk in campaigns aimed at reducing the number of new infections. The specific serological diagnostic identification, and later genotypic or molecular identification, of HIV also enabled the development of hypotheses as to the temporal and geographical origins of the virus, as well as a myriad of other hypothesis. The development of molecular diagnostic tools have enabled physicians and researchers to monitor the efficacy of treatment with anti-retroviral drugs. Molecular diagnostics are now commonly used to identify HIV in healthy people long before the onset of illness and have been used to demonstrate the existence of people who are genetically resistant to HIV infection. Thus, while there still is no cure for AIDS, there is great therapeutic and predictive benefit to identifying the virus and monitoring the virus levels within the blood of infected individuals, both for the patient and for the community at large.
Because they live so close to the outside of the body, "Thelazia" is one of the few nematode infections which can be treated topically.
Topical treatment of livestock, dogs and cats with organophosphates (such as ecothiopate iodide or isofluorophate) and systemic treatment with anthelmintics (such as ivermectin, levamisole, and doramectin) are recommended by the Merck Veterinary Manual. Other sources have reported positive results treating dogs with moxidectin, imidacloprid, or milbemycin oxime.
For the treatment of human cases, removal of the worm is suggested. Topical treatment with cocaine or thiabendazole have also been reported to kill the worms in human cases.
Because most, if not all, species of "Thelazia" are spread by flies, sanitary practices which reduce the presence of flies will also reduce the spread of thelaziasis.
No specific treatment for CTF is yet available. The first action is make sure the tick is fully removed from the skin, then acetaminophen and analgesics can be used to help relieve the fever and pain. Aspirin is not recommended for children, as it has been linked to Reye’s syndrome in some viral illnesses. Salicylates should not be used because of thrombocytopenia, and the rare occurrence of bleeding disorders. People who suspect they have been bitten by a tick or are starting to show signs of CTF should contact their physicians immediately.
Host tropism is the infection specificity of certain pathogens to particular hosts and host tissues. This type of tropism explains why most pathogens are only capable of infecting a limited range of host organisms.
Researchers can classify pathogenic organisms by the range of species and cell types that they exhibit host tropism for. For instance, pathogens that are able to infect a wide range of hosts and tissues are said to be amphotropic. Ecotropic pathogens, on the other hand, are only capable of infecting a narrow range of hosts and host tissue. Knowledge of a pathogen's host specificity allows professionals in the research and medical industries to model pathogenesis and develop vaccines, medication, and preventative measures to fight against infection. Methods such as cell engineering, direct engineering and assisted evolution of host-adapted pathogens, and genome-wide genetic screens are currently being used by researchers to better understand the host range of a variety of different pathogenic organisms.
The bacteria can survive in the rhizosphere of other crops such as tomato, carrots, sweet potato, radish, and squash as well as weed plants like lupin and pigweed, so it is very hard to get rid of it completely. When it is known that the bacterium is present in the soil, planting resistant varieties can be the best defense against the disease. Many available beet cultivars are resistant to "Pectobacterium carotovorum" subsp. "betavasculorum", and some examples are provided in the corresponding table. A comprehensive list is maintained by the USDA on the Germplasm Resources Information Network.
Even though some genes associated with root defense response have been identified, the specific mechanism of resistance is unknown, and it is currently being researched.
Because "B. suis" is facultative and intracellular, and is able to adapt to environmental conditions in the macrophage, treatment failure and relapse rates are high. The only effective way to control and eradicate zoonosis is by vaccination of all susceptible hosts and elmination of infected animals. The "Brucella abortus" (rough LPS "Brucella") vaccine, developed for bovine brucellosis and licensed by the USDA Animal Plant Health Inspection Service, has shown protection for some swine and is also effective against "B. suis" infection, but currently no approved vaccine for swine brucellosis is available.
The drug of choice for the treatment of hookworm disease is mebendazole which
is effective against both species, and in addition, will remove the intestinal
worm Ascaris also, if present. The drug is very efficient, requiring only a
single dose and is inexpensive. However, treatment requires
more than giving the anthelmintic, the patient should also receive dietary
supplements to improve their general level of health, in particular iron
supplementation is very important. Iron is an important constituent of a
multitude of enzyme systems involved in energy metabolism, DNA synthesis and
drug detoxification.
An infection of "N. americanus" parasites can be treated by using benzimidazoles, albendazole, and mebendazole. A blood transfusion may be necessary in severe cases of anemia. Light infections are usually left untreated in areas where reinfection is common. Iron supplements and a diet high in protein will speed the recovery process. In a case study involving 56–60 men with "Trichuris trichiura" and/or "N. americanus" infections, both albendazole and mebendazole were 90% effective in curing "T. trichiura". However, albendazole had a 95% cure rate for "N. americanus", while mebendazole only had a 21% cure rate. This suggests albendazole is most effective for treating both "T. trichiura" and "N. americanus".
Tapeworms are treated with medications taken by mouth, usually in a single dose. The drug of choice for tapeworm infections is praziquantel. Niclosamide can also be used.
Intravenously administered glucocorticoids, such as prednisone, are the standard of care in acute GvHD and chronic GVHD. The use of these glucocorticoids is designed to suppress the T-cell-mediated immune onslaught on the host tissues; however, in high doses, this immune-suppression raises the risk of infections and cancer relapse. Therefore, it is desirable to taper off the post-transplant high-level steroid doses to lower levels, at which point the appearance of mild GVHD may be welcome, especially in HLA mis-matched patients, as it is typically associated with a graft-versus-tumor effect.. Cyclosporine and tacrolimus are inhibitors of calcineurin. Both substances are structurally different but have the same mechanism of action. Cyclosporin binds to the cytosolic protein Peptidyl-prolyl cis-trans isomerase A (known as cyclophilin), while tacrolimus binds to the cytosolic protein Peptidyl-prolyl cis-trans isomerase FKBP12. These complexes inhibit calcineurin, block dephosphorylation of the transcription factor NFAT of activated T-cells and its translocation into the nucleus. Standard prophylaxis involves the use of cyclosporine for six months with methotrexate. Cyclosporin levels should be maintained above 200 ng/ml.
Other substances that have been studied for GvHD prophylaxis include, for example: sirolimus, pentostatin and alemtuzamab.
In August 2017 the US FDA approved ibrutinib to treat chronic GvHD after failure of one or more other systemic treatments.