Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
To date, no licensed vaccines specifically target ETEC, though several are in various stages of development. Studies indicate that protective immunity to ETEC develops after natural or experimental infection, suggesting that vaccine-induced ETEC immunity should be feasible and could be an effective preventive strategy. Prevention through vaccination is a critical part of the strategy to reduce the incidence and severity of diarrheal disease due to ETEC, particularly among children in low-resource settings. The development of a vaccine against this infection has been hampered by technical constraints, insufficient support for coordination, and a lack of market forces for research and development. Most vaccine development efforts are taking place in the public sector or as research programs within biotechnology companies. ETEC is a longstanding priority and target for vaccine development for the World Health Organization.
Treatment for ETEC infection includes rehydration therapy and antibiotics, although ETEC is frequently resistant to common antibiotics. Improved sanitation is also key. Since the transmission of this bacterium is fecal contamination of food and water supplies, one way to prevent infection is by improving public and private health facilities. Another simple prevention of infection is by drinking factory bottled water—this is especially important for travelers and traveling military—though it may not be feasible in developing countries, which carry the greatest disease burden.
Dysentery is managed by maintaining fluids by using oral rehydration therapy. If this treatment cannot be adequately maintained due to vomiting or the profuseness of diarrhea, hospital admission may be required for intravenous fluid replacement. In ideal situations, no antimicrobial therapy should be administered until microbiological microscopy and culture studies have established the specific infection involved. When laboratory services are not available, it may be necessary to administer a combination of drugs, including an amoebicidal drug to kill the parasite, and an antibiotic to treat any associated bacterial infection.
If shigellosis is suspected and it is not too severe, letting it run its course may be reasonable — usually less than a week. If the case is severe, antibiotics such as ciprofloxacin or TMP-SMX may be useful. However, many strains of "Shigella" are becoming resistant to common antibiotics, and effective medications are often in short supply in developing countries. If necessary, a doctor may have to reserve antibiotics for those at highest risk for death, including young children, people over 50, and anyone suffering from dehydration or malnutrition.
Amoebic dysentery is often treated with two antimicrobial drug such as metronidazole and paromomycin or iodoquinol.
"E. histolytica" infections occur in both the intestine and (in people with symptoms) in tissue of the intestine and/or liver. As a result, two different classes of drugs are needed to treat the infection, one for each location. Such anti-amoebic drugs are known as amoebicides.
Alternatives to fosfomycin include nitrofurantoin, pivmecillinam, and co-amoxiclav in oral treatment of urinary-tract infections associated with extended-spectrum beta-lactamase.
In a separate study, CRE were treated with colistin, amikacin, and tigecycline, and emphasizes the importance of using gentamicin in patients undergoing chemotherapy or stem-cell therapy procedures.
While colistin had shown promising activity against carbapenemase-producing isolates, more recent data suggest a resistance to it is already emerging and it will soon become ineffective.
Using another antibiotic concomitantly with carbapenem can help prevent the development of carbapenem resistance. One specific study showed a higher rate of carbapenem resistance when using meropenem alone compared with combination therapy with moxifloxacin.
In addition, several drugs were tested to gauge their effectiveness against CRE infections. "In vitro" studies have shown that rifampin has synergistic activity against carbapenem-resistant "E. coli" and "K. pneumoniae". However, more data are needed to determine if rifampin is effective in a clinical setting.
Several new agents are in development. The main areas where scientists are focusing is new β-lactamase inhibitors with activity against carbapenemases. Some of these include MK-7655, NXL104, and 6-alkylidenepenam sulfones. The exact way they affect the carbapenemases is unknown. Another experimental agent with activity against CRE is eravacycline.
Tigecycline, a member of the glycylcyclines antibiotics, has proven to be an effective therapy against Enterobacteriaceae that typically display tetracycline resistance, because tigecycline has a higher binding affinity with ribosomal sites than tetracycline has. Tigecycline is capable of killing almost all of the ESBLs and multidrug-resistant (MDR) "E. coli" isolates and the large majority of ESBL and MDR isolates of "Klebsiella" species.
A 2008 review of 42 studies of "in vitro" susceptibility of bacteria to tigecycline showed that MDR "K. pneumoniae" and "E. coli", including those that were carbapenem resistant, were susceptible more than 90% of the time. A limited number of patients have been treated with tigecycline, but the FDA has approved it in certain cases with synergies of other drugs. The limited number of patients indicates that more trials are needed to determine the overall clinical effectiveness.
Although tigecycline is the one of the first lines of defense against carbapenemase-producing isolates, negative clinical outcomes with tigecycline have occurred. Both urinary tract and primary blood infections can make tigecycline ineffective, because it has limited penetration and rapid tissue diffusion after being intravenously infused, respectively.
The Infectious Disease Society of America (IDSA) recommends treating uncomplicated methicillin resistant staph aureus (MRSA) bacteremia with a 14-day course of intravenous vancomycin. Uncomplicated bacteremia is defined as having positive blood cultures for MRSA, but having no evidence of endocarditis, no implanted prostheses, negative blood cultures after 2–4 days of treatment, and signs of clinical improvement after 72 hrs.
The antibiotic treatment of choice for streptococcal and enteroccal infections differs by species. However, it is important to look at the antibiotic resistance pattern for each species from the blood culture to better treat infections caused by resistant organisms.
The treatment of gram negative bacteremia is also highly dependent on the causative organism. Empiric antibiotic therapy should be guided by the most likely source of infection and the patient's past exposure to healthcare facilities. In particular, a recent history of exposure to a healthcare setting may necessitate the need for antibiotics with "pseudomonas aeruginosa" coverage or broader coverage for resistant organisms. Extended generation cephalosporins such as ceftriaxone or beta lactam/beta lactam inhibitor antibiotics such as piperacillin-tazobactam are frequently used for the treatment of gram negative bacteremia.
With correct treatment, most cases of amoebic and bacterial dysentery subside within 10 days, and most individuals achieve a full recovery within two to four weeks after beginning proper treatment. If the disease is left untreated, the prognosis varies with the immune status of the individual patient and the severity of disease. Extreme dehydration can delay recovery and significantly raises the risk for serious complications.
If diarrhea becomes severe (typically defined as three or more loose stools in an eight-hour period), especially if associated with nausea, vomiting, abdominal cramps, fever, or blood in stools, medical treatment should be sought. Such patients may benefit from antimicrobial therapy. A 2000 literature review found that antibiotic treatment shortens the duration and severity of TD; most reported side effects were minor, or resolved on stopping the antibiotic.
Fluoroquinolone antibiotics are the drugs of choice. Trimethoprim–sulfamethoxazole and doxycycline are no longer recommended because of high levels of resistance to these agents. Antibiotics are typically given for three to five days, but single doses of azithromycin or levofloxacin have been used. Rifaximin is approved in the U.S. for treatment of TD caused by ETEC. If diarrhea persists despite therapy, travelers should be evaluated for bacterial strains resistant to the prescribed antibiotic, possible viral or parasitic infections, bacterial or amoebic dysentery, "Giardia", helminths, or cholera.
Recovery from an anaerobic infection depends on adequate and rapid management. The main principles of managing anaerobic infections are neutralizing the toxins produced by anaerobic bacteria, preventing the local proliferation of these organisms by altering the environment and preventing their dissemination and spread to healthy tissues.
Toxin can be neutralized by specific antitoxins, mainly in infections caused by Clostridia (tetanus and botulism). Controlling the environment can be attained by draining the pus, surgical debriding of necrotic tissue, improving blood circulation, alleviating any obstruction and by improving tissue oxygenation. Therapy with hyperbaric oxygen (HBO) may also be useful. The main goal of antimicrobials is in restricting the local and systemic spread of the microorganisms.
The available parenteral antimicrobials for most infections are metronidazole, clindamycin, chloramphenicol, cefoxitin, a penicillin (i.e. ticarcillin, ampicillin, piperacillin) and a beta-lactamase inhibitor (i.e. clavulanic acid, sulbactam, tazobactam), and a carbapenem (imipenem, meropenem, doripenem, ertapenem). An antimicrobial effective against Gram-negative enteric bacilli (i.e. aminoglycoside) or an anti-pseudomonal cephalosporin (i.e. cefepime ) are generally added to metronidazole, and occasionally cefoxitin when treating intra-abdominal infections to provide coverage for these organisms. Clindamycin should not be used as a single agent as empiric therapy for abdominal infections. Penicillin can be added to metronidazole in treating of intracranial, pulmonary and dental infections to provide coverage against microaerophilic streptococci, and Actinomyces.
Oral agents adequate for polymicrobial oral infections include the combinations of amoxicillin plus clavulanate, clindamycin and metronidazole plus a macrolide. Penicillin can be added to metronidazole in the treating dental and intracranial infections to cover "Actinomyces" spp., microaerophilic streptococci, and "Arachnia" spp. A macrolide can be added to metronidazole in treating upper respiratory infections to cover "S. aureus" and aerobic streptococci. Penicillin can be added to clindamycin to supplement its coverage against "Peptostreptococcus" spp. and other Gram-positive anaerobic organisms.
Doxycycline is added to most regimens in the treatment of pelvic infections to cover chlamydia and mycoplasma. Penicillin is effective for bacteremia caused by non-beta lactamase producing bacteria. However, other agents should be used for the therapy of bacteremia caused by beta-lactamase producing bacteria.
Because the length of therapy for anaerobic infections is generally longer than for infections due to aerobic and facultative anaerobic bacteria, oral therapy is often substituted for parenteral treatment. The agents available for oral therapy are limited and include amoxacillin plus clavulanate, clindamycin, chloramphenicol and metronidazole.
In 2010 the American Surgical Society and American Society of Infectious Diseases have updated their guidelines for the treatment of abdominal infections.
The recommendations suggest the following:
For mild-to-moderate community-acquired infections in adults, the agents recommended for empiric regimens are: ticarcillin- clavulanate, cefoxitin, ertapenem, moxifloxacin, or tigecycline as single-agent therapy or combinations of metronidazole with cefazolin, cefuroxime, ceftriaxone, cefotaxime, levofloxacin, or ciprofloxacin. Agents no longer recommended are: cefotetan and clindamycin ( Bacteroides fragilis group resistance) and ampicillin-sulbactam (E. coli resistance) and ainoglycosides (toxicity).
For high risk community-acquired infections in adults, the agents recommended for empiric regimens are: meropenem, imipenem-cilastatin, doripenem, piperacillin-tazobactam, ciprofloxacin or levofloxacin in combination with metronidazole, or ceftazidime or cefepime in combination with metronidazole. Quinolones should not be used unless hospital surveys indicate >90% susceptibility of "E. coli" to quinolones.
Aztreonam plus metronidazole is an alternative, but addition of an agent effective against gram-positive cocci is recommended. The routine use of an aminoglycoside or another second agent effective against gram-negative facultative and aerobic bacilli is not recommended in the absence of evidence that the infection is caused by resistant organisms that require such therapy.
Empiric use of agents effective against enterococci is recommended and agents effective against methicillin-resistant "S. aureus" (MRSA) or yeast is not recommended in the absence of evidence of infection due to such organisms.
Empiric antibiotic therapy for health care-associated intra-abdominal should be driven by local microbiologic results. Empiric coverage of likely pathogens may require multidrug regimens that include agents with expanded spectra of activity against gram-negative aerobic and facultative bacilli. These include meropenem, imipenem-cilastatin, doripenem, piperacillin-tazobactam, or ceftazidime or cefepime in combination with metronidazole. Aminoglycosides or colistin may be required.
Antimicrobial regimens for children include an aminoglycoside-based regimen, a carbapenem (imipenem, meropenem, or ertapenem), a beta-lactam/beta-lactamase-inhibitor combination (piperacillin-tazobactam or ticarcillin-clavulanate), or an advanced-generation cephalosporin (cefotaxime, ceftriaxone, ceftazidime, or cefepime) with metronidazole.
Clinical judgment, personal experience, safety and patient compliance should direct the physician in the choice of the appropriate antimicrobial agents. The length of therapy generally ranges between 2 and 4 weeks, but should be individualized depending on the response. In some instances treatment may be required for as long as 6–8 weeks, but can often be shortened with proper surgical drainage.
Most cases of TD are mild and resolve in a few days without treatment, but severe or protracted cases may result in significant fluid loss and dangerous electrolytic imbalance. Dehydration due to diarrhea can also alter the effectiveness of medicinal and contraceptive drugs. Adequate fluid intake (oral rehydration therapy) is therefore a high priority. Commercial rehydration drinks are widely available; alternatively, purified water or other clear liquids are recommended, along with salty crackers or oral rehydration salts (available in stores and pharmacies in most countries) to replenish lost electrolytes. Carbonated water or soda, left open to allow dissipation of the carbonation, is useful when nothing else is available. In severe or protracted cases, the oversight of a medical professional is advised.
Antibiotics are not usually used for gastroenteritis, although they are sometimes recommended if symptoms are particularly severe or if a susceptible bacterial cause is isolated or suspected. If antibiotics are to be employed, a macrolide (such as azithromycin) is preferred over a fluoroquinolone due to higher rates of resistance to the latter. Pseudomembranous colitis, usually caused by antibiotic use, is managed by discontinuing the causative agent and treating it with either metronidazole or vancomycin. Bacteria and protozoans that are amenable to treatment include "Shigella" "Salmonella typhi", and "Giardia" species. In those with "Giardia" species or "Entamoeba histolytica", tinidazole treatment is recommended and superior to metronidazole. The World Health Organization (WHO) recommends the use of antibiotics in young children who have both bloody diarrhea and fever.
Antiemetic medications may be helpful for treating vomiting in children. Ondansetron has some utility, with a single dose being associated with less need for intravenous fluids, fewer hospitalizations, and decreased vomiting. Metoclopramide might also be helpful. However, the use of ondansetron might possibly be linked to an increased rate of return to hospital in children. The intravenous preparation of ondansetron may be given orally if clinical judgment warrants. Dimenhydrinate, while reducing vomiting, does not appear to have a significant clinical benefit.
On the basis of the laboratory evidence and case reports, amphotericin B has been the traditional mainstay of PAM treatment since the first reported survivor in the United States in 1982.
Treatment has often also used combination therapy with multiple other antimicrobials in addition to amphotericin, such as fluconazole, miconazole, rifampicin and azithromycin. They have shown limited success only when administered early in the course of an infection. Fluconazole is commonly used as it has been shown to have synergistic effects against naegleria when used with amphotericin in-vitro.
While the use of rifampicin has been common, including in all four North American cases of survival, its continued use has been questioned. It only has variable activity in-vitro and it has strong effects on the therapeutic levels of other antimicrobials used by inducing cytochrome p450 pathways.
In 2013, the two most recent successfully treated cases in the United States utilized drug combinations that included the medication miltefosine as well as targeted temperature management to manage brain swelling that is secondary to the infection. As of 2015 there were no data on how well miltefosine is able to reach the central nervous system. As of 2015 the U.S. CDC offered miltefosine to doctors for the treatment of free-living ameobas including naegleria.
"S. pneumonia" can be treated with a combination of penicillin and ampicillin.
For suspected Gram-negative enteric(including "E. coli") meningitis a combination of cefotaxime and aminoglycoside, usually gentamicin, is recommended. This treatment should last for 14 days after sterilization and then only cefotaxime for another 7 days creating a minimum of 21 days of therapy post-sterilization.
To help prevent the spread of amoebiasis around the home :
- Wash hands thoroughly with soap and hot running water for at least 10 seconds after using the toilet or changing a baby's diaper, and before handling food.
- Clean bathrooms and toilets often; pay particular attention to toilet seats and taps.
- Avoid sharing towels or face washers.
To help prevent infection:
- Avoid raw vegetables when in endemic areas, as they may have been fertilized using human feces.
- Boil water or treat with iodine tablets.
- Avoid eating street foods especially in public places where others are sharing sauces in one container
Good sanitary practice, as well as responsible sewage disposal or treatment, are necessary for the prevention of "E. histolytica" infection on an endemic level. "E.histolytica" cysts are usually resistant to chlorination, therefore sedimentation and filtration of water supplies are necessary to reduce the incidence of infection.
"E. histolytica" cysts may be recovered from contaminated food by methods similar to those used for recovering "Giardia lamblia" cysts from feces. Filtration is probably the most practical method for recovery from drinking water and liquid foods. "E. histolytica" cysts must be distinguished from cysts of other parasitic (but nonpathogenic) protozoa and from cysts of free-living protozoa as discussed above. Recovery procedures are not very accurate; cysts are easily lost or damaged beyond recognition, which leads to many falsely negative results in recovery tests.
Treatment consists of antibiotic therapy aimed at the typical bacterial pathogens in addition to supportive care for any complications which might result from the infection itself such as hypotension or respiratory failure. A typical regimen will include intravenous antibiotics such as from the penicillin-group which is active against "Staphylococcus aureus" and an aminoglycoside for activity against Gram-negative bacteria. For particularly invasive infections, antibiotics to cover anaerobic bacteria may be added (such as metronidazole). Treatment is typically for two weeks and often necessitates insertion of a central venous catheter or peripherally inserted central catheter.
The best known of these strains is , but non-O157 strains cause an estimated 36,000 illnesses, 1,000 hospitalizations and 30 deaths in the United States yearly. Food safety specialists recognize "Big Six" strains; O26, O45, O103, O111, O121, and O145. A was caused by another STEC, . This strain has both enteroaggregative and enterohemorrhagic properties. Both the O145 and O104 strains can cause hemolytic-uremic syndrome; the former strain shown to account for 2% to 51% of known HUS cases; an estimated 56% of such cases are caused by O145 and 14% by other EHEC strains.
EHECs that induce bloody diarrhea lead to HUS in 10% of cases. The clinical manifestations of postdiarrheal HUS include acute renal failure, microangiopathic hemolytic anemia, and thrombocytopenia. The verocytotoxin (shiga-like toxin) can directly damage renal and endothelial cells. Thrombocytopenia occurs as platelets are consumed by clotting. Hemolytic anemia results from intravascular fibrin deposition, increased fragility of red blood cells, and fragmentation.
Antibiotics are of questionable value and have not shown to be of clear clinical benefit. Antibiotics that interfere with DNA synthesis, such as fluoroquinolones, have been shown to induce the Stx-bearing bacteriophage and cause increased production of toxins. Attempts to block toxin production with antibacterials which target the ribosomal protein synthesis are conceptually more attractive. Plasma exchange offers a controversial but possibly helpful treatment. The use of antimotility agents (medications that suppress diarrhea by slowing bowel transit) in children under 10 years of age or in elderly patients should be avoided, as they increase the risk of HUS with EHEC infections.
The clinical presentation ranges from a mild and uncomplicated diarrhea to a hemorrhagic colitis with severe abdominal pain. Serotype O157:H7 may trigger an infectious dose with 100 bacterial cells or fewer; other strain such as 104:H4 has also caused an outbreak in Germany 2011. Infections are most common in warmer months and in children under five years of age and are usually acquired from uncooked beef and unpasteurized milk and juice. Initially a non-bloody diarrhea develops in patients after the bacterium attaches to the epithelium or the terminal ileum, cecum, and colon. The subsequent production of toxins mediates the bloody diarrhea. In children, a complication can be hemolytic uremic syndrome which then uses cytotoxins to attack the cells in the gut, so that bacteria can leak out into the blood and cause endothelial injury in locations such as the kidney by binding to globotriaosylceramide (Gb3).
Antibiotics are the treatment of choice for bacterial pneumonia, with ventilation (oxygen supplement) as supportive therapy. The antibiotic choice depends on the nature of the pneumonia, the microorganisms most commonly causing pneumonia in the geographical region, and the immune status and underlying health of the individual. In the United Kingdom, amoxicillin is used as first-line therapy in the vast majority of patients acquiring pneumonia in the community, sometimes with added clarithromycin. In North America, where the "atypical" forms of community-acquired pneumonia are becoming more common, clarithromycin, azithromycin, or fluoroquinolones as single therapy have displaced the amoxicillin as first-line therapy.
Local patterns of antibiotic-resistance always need to be considered when initiating pharmacotherapy. In hospitalized individuals or those with immune deficiencies, local guidelines determine the selection of antibiotics.
"Streptococcus pneumoniae" — amoxicillin (or erythromycin in patients allergic to penicillin); cefuroxime and erythromycin in severe cases.
"Staphylococcus aureus" — flucloxacillin (to counteract the organism's β-lactamase).
Treatment of CAP in children depends on the child's age and the severity of illness. Children under five are not usually treated for atypical bacteria. If hospitalization is not required, a seven-day course of amoxicillin is often prescribed, with co-trimaxazole an alternative when there is allergy to penicillins. Further studies are needed to confirm the efficacy of newer antibiotics. With the increase in drug-resistant Streptococcus pneumoniae, antibiotics such as cefpodoxime may become more popular. Hospitalized children receive intravenous ampicillin, ceftriaxone or cefotaxime, and a recent study found that a three-day course of antibiotics seems sufficient for most mild-to-moderate CAP in children.
Usually initial therapy is empirical. If sufficient reason to suspect influenza, one might consider oseltamivir. In case of legionellosis, erythromycin or fluoroquinolone.
A third generation cephalosporin (ceftazidime) + carbapenems (imipenem) + beta lactam & beta lactamase inhibitors (piperacillin/tazobactam)
Symptomatic bacteriuria is typically treated as a urinary tract infection with antibiotics. Common choices include nitrofurantoin, and trimethoprim/sulfamethoxazole.
Preventative measures require effective personal and community hygiene. Some specific safeguards include the following:
- Purification of drinking water.
- Proper handling of food.
- Careful disposal of human feces.
- Monitoring the contacts of balantidiasis patients.