Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is no cure for CPL; the aim of treatment is to relieve the signs of the disease, and to slow the progression. Management requires daily care to prevent infection of the affected skin. The first step is to trim the feather from the lower leg, to ensure no affected areas are missed, and to allow application of treatments directly to the affected skin. Bacterial infections can be treated by gentle washing and drying of the skin. Topical treatments are required to treat chorioptic mange (caused by the mite "Chorioptes equi"), as the mites are not vulnerable to oral or systemic treatments when they are within the crusts on the skin. Daily exercise assists with the flow of lymph. Combined decongestive therapy involves massage of the leg to move the lymph, followed by specialized compression bandaging which creates a pressure gradient up the leg.
Horses with CPL often have poor-quality hoof, so regular trimming is required to help keep the hoof healthy.
Drugs like ketoconazole,
voriconazole, and itraconazole are generally employed in treating the infection. Actinomycetes usually respond well to medical treatment, but the eumycetes are generally resistant and may require surgical interventions including amputation.
No vaccine is available. Simple hygienic precautions like wearing shoes or sandals while working in fields, and washing hands and feet at regular intervals may help prevent the disease.
Treatment consists of antibiotics, elevation of the affected limb, and compression. For persons with elephantiasis nostras who are overweight or obese, weight loss is recommended. Oral retinoids have been used to treat the cutaneous manifestations of the disease.
Chromoblastomycosis is very difficult to cure. The primary treatments of choice are:
- Itraconazole, an antifungal azole, is given orally, with or without flucytosine.
- Alternatively, cryosurgery with liquid nitrogen has also been shown to be effective.
Other treatment options are the antifungal drug terbinafine, an experimental drug posaconazole, and heat therapy.
Antibiotics may be used to treat bacterial superinfections.
Amphotericin B has also been used.
Currently, no cure exists for canine leishmaniasis, but various treatment options are available in different countries. Treatment is best coordinated with veterinary research hospitals. Treatment does vary by geographic area, strain of infection and exhibited symptoms. Dogs can be asymptomatic for years. Most common treatments include:
"L. donovani"
- Antimonial resistant
- Polyene antibiotic amphotericin B
"L. infantum"
- Amphotericin B
- Meglumine antimoniate
- Pentavalent antimonials
- Miltefosine
- Allopurinol
There have been no documented cases of leishmaniasis transmission from dogs to humans.
The disease can be treated with penicillin, tetracycline (not to be used in pregnant women), azithromycin or chloramphenicol, and can be prevented through contact tracing by public health officials. A single intramuscular injection of long-acting penicillin is effective against endemic treponematoses including pinta, yaws, and bejel
There are no treatment modalities for acute and chronic chikungunya that currently exist. Majority of treatment plans use supportive and symptomatic care like analgesics for pain and anti-inflammatories for inflammation caused by arthritis. In acute stages of this virus, rest, antipyretics and analgesics are used to subside symptoms. Most use non-steroidal anti-inflammatory drugs (NSAIDs). In some cases, joint pain may resolve from treatment but stiffness remains.
Itraconazole given orally is the treatment of choice for most forms of the disease. Ketoconazole may also be used. Cure rates are high, and the treatment over a period of months is usually well tolerated. Amphotericin B is considerably more toxic, and is usually reserved for immunocompromised patients who are critically ill and those with central nervous system disease. Patients who cannot tolerate deoxycholate formulation of Amphotericin B can be given lipid formulations. Fluconazole has excellent CNS penetration and is useful where there is CNS involvement after initial treatment with Amphotericin B.
The dramatic response to a commonly used drug for filaria (diethylcarbamazine) almost confirms the diagnosis. No universal treatment guidelines have been established for tropical pulmonary eosinophilia. The antifilarial diethylcarbamazine (6 mg/kg/day in three divided doses for 21 days remains the main therapeutic agent, and is generally well tolerated. Reported side effects include headache, fever, pruritus and gastrointestinal upset. The eosinophil count often falls dramatically within 7–10 days of starting treatment.
Significant disease develops in fewer than 5% of those infected and typically occurs in those with a weakened immune system. Mild asymptomatic cases often do not require any treatment, and the symptoms will go away within a few months. Those with severe symptoms may benefit from anti-fungal therapy, which usually requires 3–6 months of treatment. There is a lack of prospective studies that examine optimal anti-fungal therapy for coccidioidomycosis.
On the whole, oral fluconazole and intravenous amphotericin B are used in progressive or disseminated disease, or in immunocompromised individuals. Amphotericin B used to be the only available treatment, although now there are alternatives, including itraconazole or ketoconazole may be used for milder disease. Fluconazole is the preferred medication for coccidioidal meningitis, due to its penetration into CSF. Intrathecal or intraventricular amphotericin B therapy is used if infection persists after fluconazole treatment. Itraconazole is used for cases that involve treatment of infected person's bones and joints. The antifungal medications posaconazole and voriconazole have also been used to treat coccidioidomycosis. Because the symptoms of valley fever are similar to the common flu and other respiratory diseases, it is important for public health professionals to be aware of the rise of valley fever and the specifics of diagnosis. Greyhound dogs often get valley fever as well, and their treatment regimen involves 6–12 months of Ketoconazole, to be taken with food.
Treatment of loiasis involves chemotherapy or, in some cases, surgical removal of adult worms followed by systemic treatment. The current drug of choice for therapy is diethylcarbamazine (DEC), though ivermectin use is not unwarranted. The recommend dosage of DEC is 6 mg/kg/d taken three times daily for 12 days. The pediatric dose is the same. DEC is effective against microfilariae and somewhat effective against macrofilariae (adult worms).
In patients with high microfilaria load, however, treatment with DEC may be contraindicated, as the rapid microfilaricidal actions of the drug can provoke encephalopathy. In these cases, albendazole administration has proved helpful, and superior to ivermectin, which can also be risky despite its slower-acting microfilaricidal effects.
Management of "Loa loa" infection in some instances can involve surgery, though the timeframe during which surgical removal of the worm must be carried out is very short. A detailed surgical strategy to remove an adult worm is as follows (from a real case in New York City). The 2007 procedure to remove an adult worm from a male Gabonian immigrant employed proparacaine and povidone-iodine drops, a wire eyelid speculum, and 0.5 ml 2% lidocaine with epinephrine 1:100,000, injected superiorly. A 2-mm incision was made and the immobile worm was removed with forceps. Gatifloxacin drops and an eye-patch over ointment were utilized post surgery and there were no complications (unfortunately, the patient did not return for DEC therapy to manage the additional worm—and microfilariae—present in his body).
In areas where the known vector is a sandfly, deltamethrin collars worn by the dogs has been proven to be 86% effective. The sandfly is most active at dusk and dawn; keeping dogs indoors during those peak times will help minimize exposure.
Unfortunately, there is no one answer for leishmaniasis prevention, nor will one vaccine cover multiple species. "Different virulence factors have been identified for distinct "Leishmania" species, and there are profound differences in the immune mechanisms that mediate susceptibility/resistance to infection and in the pathology associated with disease."
In 2003, Fort Dodge Wyeth released the Leshmune vaccine in Brazil for "L. donovani" (also referred to as "kala-azar" in Brazil). Studies indicated up to 87% protection. Most common side effects from the vaccine have been noted as anorexia and local swelling.
The president of the Brazil Regional Council of Veterinary Medicine, Marcia Villa, warned since vaccinated dogs develop antibodies, they can be difficult to distinguish from asymptomatic, infected dogs.
Studies also indicate the Leshmune vaccine may be reliable in treating "L. chagasi", and a possible treatment for dogs already infected with "L. donovani".
Praziquantel is the drug of choice for treatment. Treatment is effective in early or light infections. Heavy infections are more difficult to treat. Studies of the effectiveness of various drugs for treatment of children with "F. buski" have shown tetrachloroethylene as capable of reducing faecal egg counts by up to 99%. Other anthelmintics that can be used include thiabendazole, mebendazole, levamisole and pyrantel pamoate. Oxyclozanide, hexachlorophene and nitroxynil are also highly effective.
Anti-helminthics are often used to kill off the worms, however in some cases this may cause patients to worsen due to toxins released by the dying worms. Albendazole, ivermectin, mebendazole, and pyrantel are all commonly used, though albendazole is usually the drug of choice. Studies have shown that anti-helminthic drugs may shorten the course of the disease and relieve symptoms. Therefore anti-helminthics are generally recommended, but should be administered gradually so as to limit the inflammatory reaction.
A goal of community base efforts is to eliminate microfilariae from the blood of infected individuals in order to prevent transmission to the mosquito. This is primarily accomplished through the use of drugs. The treatment for "B. malayi" infection is the same as for bancroftian filariasis. Diethylcarbamazine (DEC) has been used in mass treatment programs in the form of DEC-medicated salt, as an effective microfilaricidal drug in several locations, including India. While DEC tends to cause adverse reactions like immediate fever and weakness, it is not known to cause any long-term adverse drug effects. DEC has been shown to kill both adult worms and microfilariae. In Malaysia, DEC dosages (6 mg/kg weekly for 6 weeks; 6 mg/kg daily for 9 days) reduced microfilariae by 80% for 18–24 months after treatment in the absence of mosquito control. Microfilariae numbers slowly return many months after treatment, thus requiring multiple drug doses over time in order to achieve long-term control. However, it is not known how many years of mass drug administration is required to eliminate transmission. But currently, there have been no confirmed cases of DEC resistance.
Single doses of two drugs (albendazole-DEC and albendazole-ivermectin) have been shown to remove 99% of microfilariae for a year after treatment and help to improve elephantiasis during early stages of the disease. Ivermectin does not appear to kill adult worms but serves as a less toxic microfilaricide.
Since the discovery of the importance of "Wolbachia" bacteria in the life cycle of "B. malayi" and other nematodes, novel drug efforts have targeted the endobacterium. Tetracyclines, rifampicin, and chloramphenicol have been effective in vitro by interfering with larvae molting and microfilariae development. Tetracyclines have been shown to cause reproductive and embryogenesis abnormalities in the adult worms, resulting in worm sterility. Clinical trials have demonstrated the successful reduction of "Wolbachia" and microfilariae in onchocerciasis and "W. bancrofti" infected patients. These antibiotics, while acting through a slightly more indirect route, are promising antifilarial drugs.
Conventional "amphotericin B desoxycholate" (AmB: used since the 1950s as a primary agent) is known to be associated with increased drug-induced Nephrotoxicity (Renal toxicity) impairing Renal function. Other formulations have been developed such as lipid soluble formulations to mitigate such side-effects as direct proximal and distal tubular cytotoxicity. These include liposomal amphotericin B, "amphotericin B lipid complex" such as Abelcet (brand) "amphotericin B phospholipid complex" also as "AmBisome Intravenous", or "Amphotec Intravenous" (Generic; Amphotericin B Cholesteryl Sul) and, "amphotericin B colloidal dispersion", all shown to exhibit a decrease in nephrotoxicity. The later was not as effective in one study as "amphotericin B desoxycholate" which had a 50% murine morbidity rate versus zero for the AmB colloidal dispersion.
The cost of AmB deoxycholate in 2015, for a patient of at 1 mg/kg/day dosage, was approximately $63.80, compared to 5 mg/kg/day of liposomal AmB at $1318.80. This may be a concern in resource-limited settings.
Treatment of KBD is palliative. Surgical corrections have been made with success by Chinese and Russian orthopedists. By the end of 1992, Médecins Sans Frontières—Belgium started a physical therapy programme aiming at alleviating the symptoms of KBD patients with advanced joint impairment and pain (mainly adults), in Nyemo county, Lhasa prefecture. Physical therapy had significant effects on joint mobility and joint pain in KBD patients. Later on (1994–1996), the programme has been extended to several other counties and prefectures in Tibet.
The cornerstone of prevention and treatment of podoconiosis is avoidance of exposure to irritant soils. Wearing shoes in the presence of irritant soils is the primary method of exposure reduction. In Rwanda, a country of high disease prevalence, the government has banned walking barefoot in public, in order to curtail podoconiosis and other soil-borne diseases.
Once the disease has developed, rigorous foot hygiene including daily washing with soap and water, application of an emollient, and nightly elevation of the affected extremity has been shown to reduce swelling and disability. Compression wrapping and decongestive physiotherapy of the affected extremity has been shown to be effective in other forms of lymphedema, but the benefits of these therapies have not been rigorously studied in podoconiosis. Nodules will not resolve with these conservative measures, although surgical removal of the nodules can be performed.
Anti-helminthics should generally be paired with corticosteroids in severe infections to limit the inflammatory reaction to the dying parasites. Studies suggest that a two-week regimen of a combination of mebendazole and prednisolone significantly shortened the course of the disease and length of associated headaches without observed harmful side effects. Other studies suggest that albendazole may be more favorable, because it may be less like to incite an inflammatory reaction. The Chinese herbal medicine long-dan-xie-gan-tan (LDGXT) has also been shown to have a similar anti inflammatory effect, and in mild cases may be used alone to relieve symptoms while infection resolves itself.
Fungal meningitis is treated with long courses of high dose antifungal medications. The duration of treatment is dependent upon the causal pathogen and the patient's ability to stave off the infection; for patients with a weaker immune system or diabetes, treatment will often take longer.
This disease is caused by problems in the circulatory system, so when it is presented, in the beginning it is important to follow several recommendations. The person needs to keep the legs elevated as much as possible to help the return of the blood. Whenever sitting down, the person needs to keep the legs on a foot stool. At night it is advisable to sleep with a pillow under the lower legs. In the evening, t is not unusual for legs to be swollen. The volume of the lower leg can increase to up to 100ml after a long working day or up to 200ml after a long-haul flight without moving.
In the example of the 41-year-old Japanese man the lesions were much improved by washing and topical use of corticosteroids for two months, also oral antibiotics like cephalexin are used if cellulitis is present. Moist exudative inflammation and moist ulcers respond to tepid wet compresses of Burow’s solution or just saline or water for 30 to 60 minutes several times a day. But in worse cases, edema that does not disappear spontaneously within a few hours or after a walk, is described as pathological, so it needs to have a special treatment. It is very important to say that Papillamitosis, bilateral and marked edema with few symptoms is mostly caused by the systemic circulation (heart, kidneys, liver).
Papillamitosis is associated, as has been mentioned before, with symptoms and/or clinical signs such as dilated superficial veins, varicose veins and changes in the skin. Edema and its complication Papillamitosis are only partially reversible and soon becomes hard, which is mainly confirmed on palpation. All skin structures are affected and this is characterized by the term. Lymphoedema may develop in many cases accompanied by acral thickening of the skin folds, hyperkeratosis and papillomatosis.
The severe symptoms caused by the parasite can be avoided by cleansing the skin, surgery, or the use of anthelmintic drugs, such as diethylcarbamazine (DEC), ivermectin, or albendazole. The drug of choice is DEC, which can eliminate the microfilariae from the blood and also kill the adult worms with a dosage of 6 mg/kg semiannually or annually. A polytherapy treatment that includes ivermectin with DEC or albendazole is more effective than each drug alone. Protection is similar to that of other mosquito-spread illnesses; one can use barriers both physical (a mosquito net), chemical (insect repellent), or mass chemotherapy as a method to control the spread of the disease.
Mass chemotherapy should cover the entire endemic area at the same time. This will significantly decrease the overall microfilarial titer in blood in mass, hence decreasing the transmission through mosquitoes during their subsequent bites.
Antibiotic active against the Wolbachia symbionts of the worm have been experimented with as treatment. Wolbachia-free worms first become sterile, and later die prematurely.
The recommended treatment for people outside the United States is albendazole combined with ivermectin. A combination of diethylcarbamazine and albendazole is also effective. Side effects of the drugs include nausea, vomiting, and headaches. All of these treatments are microfilaricides; they have no effect on the adult worms. While the drugs are critical for treatment of the individual, proper hygiene is also required.
Different trials were made to use the known drug at its maximum capacity in absence of new drugs. In a study from India, it was shown that a formulation of albendazole had better anti-filarial efficacy than albendazole itself.
In 2003, the common antibiotic doxycycline was suggested for treating elephantiasis. Filarial parasites have symbiotic bacteria in the genus "Wolbachia", which live inside the worm and seem to play a major role in both its reproduction and the development of the disease. This drug has shown signs of inhibiting the reproduction of the bacteria, further inducing sterility.
Clinical trials in June 2005 by the Liverpool School of Tropical Medicine reported an eight-week course almost completely eliminated microfilaraemia.
Dengue infection's therapeutic management is simple, cost effective and successful in saving lives by adequately performing timely institutionalized interventions. Treatment options are restricted, while no effective antiviral drugs for this infection have been accessible to date. Patients in the early phase of the dengue virus may recover without hospitalization. However, ongoing clinical research is in the works to find specific anti-dengue drugs.