Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment varies according to the type and severity of the encephalopathy. Anticonvulsants may be prescribed to reduce or halt any seizures. Changes to diet and nutritional supplements may help some patients. In severe cases, dialysis or organ replacement surgery may be needed.
Sympathomimetic drugs can increase motivation, cognition, motor performance and alertness in patients with encephalopathy caused by brain injury, chronic infections, strokes, brain tumors.
In the past, treatment options were limited to supportive medical therapy. Nowadays neonatal encephalopathy is treated using hypothermia therapy.
Response to treatment is variable and the long-term and functional outcome is unknown. To provide a basis for improving the understanding of the epidemiology, genotype/phenotype correlation and outcome of these diseases their impact on the quality of life of patients, and for evaluating diagnostic and therapeutic strategies a patient registry was established by the noncommercial International Working Group on Neurotransmitter Related Disorders (iNTD).
Most symptoms will improve quickly if deficiencies are treated early. Memory disorder may be permanent.
In patients suspected of WE, thiamine treatment should be started immediately. Blood should be immediately taken to test for thiamine, other vitamins and minerals levels. Following this an immediate intravenous or intramuscular dose of thiamine should be administered two or three times daily. Thiamine administration is usually continued until clinical improvement ceases.
Considering the diversity of possible causes and several surprising symptomatologic presentations, and because there is low assumed risk of toxicity of thiamine, because the therapeutic response is often dramatic from the first day, some qualified authors indicate parenteral thiamine if WE is suspected, both as a resource for diagnosis and treatment. The diagnosis is highly supported by the response to parenteral thiamine, but is not sufficient to be excluded by the lack of it. Parenteral thiamine administration is associated with a very small risk of anaphylaxis.
Alcohol abusers may have poor dietary intakes of several vitamins, and impaired thiamine absorption, metabolism, and storage; they may thus require higher doses.
If glucose is given, such as in hypoglycaemic alcoholics, thiamine must be given concurrently. If this is not done, the glucose will rapidly consume the remaining thiamine reserves, exacerbating this condition.
The observation of edema in MR, and also the finding of inflation and macrophages in necropsied tissues, has led to successful administration of antiinflammatories.
Other nutritional abnormalities should also be looked for, as they may be exacerbating the disease. In particular, magnesium, a cofactor of transketolase which may induce or aggravate the disease.
Other supplements may also be needed, including: cobalamin, ascorbic acid, folic acid, nicotinamide, zinc, phosphorus (dicalcium phosphate) and in some cases taurine, especially suitable when there cardiocirculatory impairment.
Patient-guided nutrition is suggested. In patients with Wernicke-Korsakoff syndrome, even higher doses of parenteral thiamine are recommended. Concurrent toxic effects of alcohol should also be considered.
The treatment of PRES dependent on its cause. Anti-epileptic medication may also be appropriate.
Treating the underlying cause of the disorder may improve or reverse symptoms. However, in some cases, the encephalopathy may cause permanent structural changes and irreversible damage to the brain. These permanent deficits can be considered a form of stable dementia. Some encephalopathies can be fatal.
Treatment is mainly for the symptoms that toxic encephalopathy brings upon victims, varying depending on how severe the case is. Diet changes and nutritional supplements may help some patients. To reduce or halt seizures, anticonvulsants may be prescribed. Dialysis or organ replacement surgery may be needed in some severe cases.
Management of affected individuals consists of immediate removal from exposure to the toxic substance(s), treatment of the common clinical manifestation of depression if present, and counselling for the provision of life strategies to help cope with the potentially debilitating condition.
As of 2014, no treatment strategy has yet been investigated in a randomized clinical trial. Verapamil, nimodipine, and other calcium channel blockers may help reduce the intensity and frequency of the headaches. A clinician may recommend rest and the avoidance of activities or vasoactive drugs which trigger symptoms (see § Causes). Analgesics and anticonvulsants can help manage pain and seizures, respectively.
At the moment there are no therapies specifically targeting the underlying cause of AGS. Current treatments address the symptoms, which can be varied both in scope and severity. Many patients benefit from tube-feeding. Drugs can be administered to help with seizures / epilepsy. The treatment of chilblains remains problematic, but particularly involves keeping the feet / hands warm. Physical therapy, including the use of splints can help to prevent contractures and surgery is sometimes required. Botox (botulinium toxin) has sometimes caused severe immune reactions in some AGS patients, and the high risk of possible further brain damage must be considered before giving Botox. Occupational therapy can help with development, and the use of technology (e.g. Assistive Communication Devices) can facilitate communication. Patients should be regularly screened for treatable conditions, most particularly glaucoma and endocrine problems (especially hypothyroidism). The risk versus benefit of giving immunizations also must be considered, as some AGS patients have high immune responses or flares that cause further brain damage from immunizations but other patients have no problems with immunizations; on the other hand, AGS patients have died from illnesses that can be immunized against, so the family must consider the risk vs. benefit of each immunization vs. risk of the actual virus if they choose not to immunize. As of 2017, there are current drug trials being conducted that may lead to drug treatments for AGS.
There are hospital protocols for prevention, supplementing with thiamine in the presence of: history of alcohol misuse or related seizures, requirement for IV glucose, signs of malnutrition, poor diet, recent diarrhea or vomiting, peripheral neuropathy, intercurrent illness, delirium tremens or treatment for DTs, and others. Some experts advise parenteral thiamine should be given to all at-risk patients in the emergency room.
In the clinical diagnosis should be remembered that early symptoms are nonspecific, and it has been stated that WE may present nonspecific findings. There is consensus to provide water-soluble vitamins and minerals after gastric operations.
In some countries certain foods have been supplemented with thiamine, and have reduced WE cases. Improvement is difficult to quantify because they applied several different actions. Avoiding alcohol and having adequate nutrition reduces one of the main risk factors in developing Wernicke-Korsakoff syndrome.
Several drug therapies have been used on patients with KLS, but none of them have been subject to randomized controlled trials. A 2016 Cochrane Review concluded that "No evidence indicates that pharmacological treatment for Kleine-Levin syndrome is effective and safe".
In several cases, stimulants, including modafinil, have been reported to have a limited effect on patients, often alleviating sleepiness. They can cause behavioral problems, but they may pose fewer issues if used in older patients with mild symptoms. In some case reports, lithium has been reported to decrease the length of episodes and the severity of their symptoms and to increase the time between episodes. It has been reported to be effective in about 25 to 60 percent of cases. Its use carries the risk of side effects in the thyroid or kidneys. Anti-psychotics and benzodiazepines can help alleviate psychotic and anxiety related symptoms, respectively. Carbamazepine has been reported to be less effective than lithium but more effective than some drugs in its class. Electroconvulsive therapy is not effective and worsens symptoms.
KLS patients generally do not need to be admitted to hospitals. It is recommended that caregivers reassure them and encourage them to maintain sleep hygiene. It may also be necessary for patients to be prevented from putting themselves in dangerous situations, such as driving.
It was once assumed that anyone suffering from Korsakoff's syndrome would eventually need full-time care. This is still often the case, but rehabilitation can help regain some, albeit often limited, level of independence. Treatment involves the replacement or supplementation of thiamine by intravenous (IV) or intramuscular (IM) injection, together with proper nutrition and hydration. However, the amnesia and brain damage caused by the disease does not always respond to thiamine replacement therapy. In some cases, drug therapy is recommended. Treatment of the patient typically requires taking thiamine orally for 3 to 12 months, though only about 20 percent of cases are reversible. If treatment is successful, improvement will become apparent within two years, although recovery is slow and often incomplete.
As an immediate form of treatment, a pairing of IV or IM thiamine with a high concentration of B-complex vitamins can be administered three times daily for period of 2–3 days. In most cases, an effective response from patients will be observed. A dose of 1 gram of thiamine can also be administered to achieve a clinical response. In patients who are seriously malnourished, the sudden availability of glucose without proper bodily levels of thiamine to metabolize is thought to cause damage to cells. Thus, the administration of thiamine along with an intravenous form of glucose is often good practice.
Treatment for the memory aspect of Korsakoff's syndrome can also include domain-specific learning, which when used for rehabilitation is called the method of vanishing cues. Such treatments aim to use patients' intact memory processes as the basis for rehabilitation. Patients who used the method of vanishing cues in therapy were found to learn and retain information more easily.
People diagnosed with Korsakoff's are reported to have a normal life expectancy, presuming that they abstain from alcohol and follow a balanced diet. Empirical research has suggested that good health practices have beneficial effects in Korsakoff's syndrome.
Many antiepileptic drugs are used for the management of canine epilepsy. Oral phenobarbital, in particular, and imepitoin are considered to be the most effective antiepileptic drugs and usually used as ‘first line’ treatment. Other anti-epileptics such as zonisamide, primidone, gabapentin, pregabalin, sodium valproate, felbamate and topiramate may also be effective and used in various combinations. A crucial part of the treatment of pets with epilepsy is owner education to ensure compliance and successful management.
At the hospital, physicians follow standard protocol for managing seizures. Cluster seizures are generally controlled by benzodiazepines such as diazepam, midazolam, lorazepam or clonazepam. The use of oxygen is recommended in the United States, but in Europe it is only recommended in cases of prolonged epileptic status.
The onset of Wernicke's encephalopathy is considered a medical emergency, and thus thiamine administration should be initiated immediately when the disease is suspected. Prompt administration of thiamine to patients with Wernicke's encephalopathy can prevent the disorder from developing into Wernicke–Korsakoff syndrome, or reduce its severity. Treatment can also reduce the progression of the deficits caused by WKS, but will not completely reverse existing deficits. WKS will continue to be present, at least partially, in 80% of patients. Patients suffering from WE should be given a minimum dose of 500 mg of thiamine hydrochloride, delivered by infusion over a 30-minute period for two to three days. If no response is seen then treatment should be discontinued but for those patients that do respond, treatment should be continued with a 250 mg dose delivered intravenously or intramuscularly for three to five days unless the patient stops improving. Such prompt administration of thiamine may be a life-saving measure. Banana bags, a bag of intravenous fluids containing vitamins and minerals, is one means of treatment.
Lithium is the only drug that appears to have a preventive effect. In two studies of more than 100 patients, lithium helped prevent recurrence of symptoms in 20% to 40% of cases. The recommended blood level of lithium for KLS patients is 0.8-1.2 mEq/ml. It is not known if other mood stabilizers have an effect on the condition. Anti-depressants do not prevent recurrence.
As described, Korsakoff 's syndrome usually follows or accompanies Wernicke's encephalopathy. If treated quickly, it may be possible to prevent the development of Korsakoff's syndrome with thiamine treatments. This treatment is not guaranteed to be effective and the thiamine needs to be administered adequately in both dose and duration. A study on Wernicke-Korsakoff's syndrome showed that with consistent thiamine treatment there were noticeable improvements in mental status after only 2–3 weeks of therapy. Thus, there is hope that with treatment Wernicke's encephalopathy will not necessarily progress to WKS.
In order to reduce the risk of developing WKS it is important to limit the intake of alcohol or drink in order to ensure that proper nutrition needs are met. A healthy diet is imperative for proper nutrition which, in combination with thiamine supplements, may reduce the chance of developing WKS. This prevention method may specifically help heavy drinkers who refuse to or are unable to quit.
The antibiotic rifaximin may be recommended in addition to lactulose for those with recurrent disease. It is a nonabsorbable antibiotic from the rifamycin class. This is thought to work in a similar way to other antibiotics, but without the complications attached to neomycin or metronidazole. Due to the long history and lower cost of lactulose use, rifaximin is generally only used as a second-line treatment if lactulose is poorly tolerated or not effective. When rifaximin is added to lactulose, the combination of the two may be more effective than each component separately. Rifaximin is more expensive than lactulose, but the cost may be offset by reduced hospital admissions for encephalopathy.
The antibiotics neomycin and metronidazole are other antibiotics used to treat hepatic encephalopathy. The rationale of their use was the fact that ammonia and other waste products are generated and converted by intestinal bacteria, and killing these bacteria would reduce the generation of these waste products. Neomycin was chosen because of its low intestinal absorption, as neomycin and similar aminoglycoside antibiotics may cause hearing loss and kidney failure if used by injection. Later studies showed that neomycin was indeed absorbed when taken by mouth, with resultant complications. Metronidazole, similarly, is less commonly used because prolonged use can cause nerve damage, in addition to gastrointestinal side effects.
Lactulose and lactitol are disaccharides that are not absorbed from the digestive tract. They are thought to decrease the generation of ammonia by bacteria, render the ammonia inabsorbable by converting it to ammonium (NH) ions, and increase transit of bowel content through the gut. Doses of 15-30 ml are administered three times a day; the result is aimed to be 3–5 soft stools a day, or (in some settings) a stool pH of <6.0. Lactulose may also be given by enema, especially if encephalopathy is severe. More commonly, phosphate enemas are used. This may relieve constipation, one of the causes of encephalopathy, and increase bowel transit.
Lactulose and lactitol are beneficial for treating hepatic encephalopathy, and are the recommended first-line treatment. Lactulose does not appear to be more effective than lactitol for treating people with hepatic encephalopathy. Side effects of lactulose and lactitol include the possibility of diarrhea, bloating, flatulence, and nausea. In acute liver failure, it is unclear whether lactulose is beneficial. The possible side effect of bloating may interfere with a liver transplant procedure if required.
Antiepileptic drugs (AEDs) are used in most cases to control seizures, however, PCDH19 gene-related epilepsy is generally associated with early-onset development of drug resistant seizures. Existing data supports the use of “rational polypharmacy,” which consists of a step-wise addition of AEDs until a patient responds favorably or experiences intolerable adverse events. In general, as in other types of uncontrolled epilepsy, the use of drugs with different mechanisms of action appears to be more effective than combining drugs with similar mechanisms of action.
No currently marketed AEDs have been extensively studied in PCDH19 gene-related epilepsy and there is no established treatment strategy for girls diagnosed with PCDH19 gene-related epilepsy. Patients may respond well to treatment with levetiracetam and in cases of drug resistance, stiripentol, which is not approved in the U.S. but is available through the FDA Expanded Access IND process.
Treatment is symptomatic and may include nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids to reduce swelling, antibiotics and immunosuppressants. Surgery may be indicated to relieve pressure on the facial nerves and reduce swelling, but its efficacy is uncertain. Massage and electrical stimulation may also be prescribed.
Because most patients respond to steroids or immunosuppressant treatment, this condition is now also referred to as steroid-responsive encephalopathy.
Initial treatment is usually with oral prednisone (50–150 mg/day) or high-dose IV methylprednisolone (1 g/day) for 3–7 days. Thyroid hormone treatment is also included if required.
Failure of some patients to respond to this first line treatment has produced a variety of alternative treatments including azathioprine, cyclophosphamide, chloroquine, methotrexate, periodic intravenous immunoglobulin and plasma exchange. There have been no controlled trials so the optimal treatment is not known.
Seizures, if present, are controlled with typical antiepileptic agents.
No known treatment for BPT currently exists. However, the condition it is self-limiting and resolves after about eighteen months.
Many cases resolve within 1–2 weeks of controlling blood pressure and eliminating the inciting factor. However some cases may persist with permanent neurologic impairment in the form of visual changes and seizures among others. Though uncommon, death may occur with progressive swelling of the brain (cerebral edema), compression of the brainstem, increased intracranial pressure, or a bleed in the brain (intracerebral hemorrhage). PRES may recur in about 5-10% of cases; this occurs more commonly in cases precipitated by hypertension as opposed to other factors (medications, etc.).
Medications that impede the release of excitatory neurotransmitters have been used to control or prevent spasms. Treatment with intrathecal baclofen, a gamma-aminobutyric acid (GABA) agonist, decreases muscle tone and has been shown to decrease the frequency of muscle spasms in ADCP patients. Tetrabenazine, a drug commonly used in the treatment of Huntington's disease, has been shown to be effective treating chorea.