Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment is mainly for the symptoms that toxic encephalopathy brings upon victims, varying depending on how severe the case is. Diet changes and nutritional supplements may help some patients. To reduce or halt seizures, anticonvulsants may be prescribed. Dialysis or organ replacement surgery may be needed in some severe cases.
Management of affected individuals consists of immediate removal from exposure to the toxic substance(s), treatment of the common clinical manifestation of depression if present, and counselling for the provision of life strategies to help cope with the potentially debilitating condition.
Treatment varies according to the type and severity of the encephalopathy. Anticonvulsants may be prescribed to reduce or halt any seizures. Changes to diet and nutritional supplements may help some patients. In severe cases, dialysis or organ replacement surgery may be needed.
Sympathomimetic drugs can increase motivation, cognition, motor performance and alertness in patients with encephalopathy caused by brain injury, chronic infections, strokes, brain tumors.
The antibiotic rifaximin may be recommended in addition to lactulose for those with recurrent disease. It is a nonabsorbable antibiotic from the rifamycin class. This is thought to work in a similar way to other antibiotics, but without the complications attached to neomycin or metronidazole. Due to the long history and lower cost of lactulose use, rifaximin is generally only used as a second-line treatment if lactulose is poorly tolerated or not effective. When rifaximin is added to lactulose, the combination of the two may be more effective than each component separately. Rifaximin is more expensive than lactulose, but the cost may be offset by reduced hospital admissions for encephalopathy.
The antibiotics neomycin and metronidazole are other antibiotics used to treat hepatic encephalopathy. The rationale of their use was the fact that ammonia and other waste products are generated and converted by intestinal bacteria, and killing these bacteria would reduce the generation of these waste products. Neomycin was chosen because of its low intestinal absorption, as neomycin and similar aminoglycoside antibiotics may cause hearing loss and kidney failure if used by injection. Later studies showed that neomycin was indeed absorbed when taken by mouth, with resultant complications. Metronidazole, similarly, is less commonly used because prolonged use can cause nerve damage, in addition to gastrointestinal side effects.
Lactulose and lactitol are disaccharides that are not absorbed from the digestive tract. They are thought to decrease the generation of ammonia by bacteria, render the ammonia inabsorbable by converting it to ammonium (NH) ions, and increase transit of bowel content through the gut. Doses of 15-30 ml are administered three times a day; the result is aimed to be 3–5 soft stools a day, or (in some settings) a stool pH of <6.0. Lactulose may also be given by enema, especially if encephalopathy is severe. More commonly, phosphate enemas are used. This may relieve constipation, one of the causes of encephalopathy, and increase bowel transit.
Lactulose and lactitol are beneficial for treating hepatic encephalopathy, and are the recommended first-line treatment. Lactulose does not appear to be more effective than lactitol for treating people with hepatic encephalopathy. Side effects of lactulose and lactitol include the possibility of diarrhea, bloating, flatulence, and nausea. In acute liver failure, it is unclear whether lactulose is beneficial. The possible side effect of bloating may interfere with a liver transplant procedure if required.
For newborn infants starved of oxygen during birth there is now evidence that hypothermia therapy for neonatal encephalopathy applied within 6 hours of cerebral hypoxia effectively improves survival and neurological outcome. In adults, however, the evidence is less convincing and the first goal of treatment is to restore oxygen to the brain. The method of restoration depends on the cause of the hypoxia. For mild-to-moderate cases of hypoxia, removal of the cause of hypoxia may be sufficient. Inhaled oxygen may also be provided. In severe cases treatment may also involve life support and damage control measures.
A deep coma will interfere with body's breathing reflexes even after the initial cause of hypoxia has been dealt with; mechanical ventilation may be required. Additionally, severe cerebral hypoxia causes an elevated heart rate, and in extreme cases the heart may tire and stop pumping. CPR, defibrilation, epinephrine, and atropine may all be tried in an effort to get the heart to resume pumping. Severe cerebral hypoxia can also cause seizures, which put the patient at risk of self-injury, and various anti-convulsant drugs may need to be administered before treatment.
There has long been a debate over whether newborn infants with cerebral hypoxia should be resuscitated with 100% oxygen or normal air. It has been demonstrated that high concentrations of oxygen lead to generation of oxygen free radicals, which have a role in reperfusion injury after asphyxia. Research by Ola Didrik Saugstad and others led to new international guidelines on newborn resuscitation in 2010, recommending the use of normal air instead of 100% oxygen.
Brain damage can occur both during and after oxygen deprivation. During oxygen deprivation, cells die due to an increasing acidity in the brain tissue (acidosis). Additionally, during the period of oxygen deprivation, materials that can easily create free radicals build up. When oxygen enters the tissue these materials interact with oxygen to create high levels of oxidants. Oxidants interfere with the normal brain chemistry and cause further damage (this is known as "reperfusion injury").
Techniques for preventing damage to brain cells are an area of ongoing research. Hypothermia therapy for neonatal encephalopathy is the only evidence-supported therapy, but antioxidant drugs, control of blood glucose levels, and hemodilution (thinning of the blood) coupled with drug-induced hypertension are some treatment techniques currently under investigation. Hyperbaric oxygen therapy is being evaluated with the reduction in total and myocardial creatine phosphokinase levels showing a possible reduction in the overall systemic inflammatory process.
In severe cases it is extremely important to act quickly. Brain cells are very sensitive to reduced oxygen levels. Once deprived of oxygen they will begin to die off within five minutes.
Treating the underlying cause of the disorder may improve or reverse symptoms. However, in some cases, the encephalopathy may cause permanent structural changes and irreversible damage to the brain. These permanent deficits can be considered a form of stable dementia. Some encephalopathies can be fatal.
To minimise the risk of this condition developing from its most common cause, overly rapid reversal of hyponatremia, the hyponatremia should be corrected at a rate not exceeding 10 mmol/L/24 h or 0.5 mEq/L/h; or 18 m/Eq/L/48hrs; thus avoiding demyelination. No large clinical trials have been performed to examine the efficacy of therapeutic re-lowering of serum sodium, or other interventions sometimes advocated such as steroids or plasma exchange.
Alcoholic patients should receive vitamin supplementation and a formal evaluation of their nutritional status.
Once osmotic demyelination has begun, there is no cure or specific treatment. Care is mainly supportive. Alcoholics are usually given vitamins to correct for other deficiencies. The favourable factors contributing to the good outcome in CPM without hyponatremia were: concurrent treatment of all electrolyte disturbances, early Intensive Care Unit involvement at the advent of respiratory complications, early introduction of feeding including thiamine supplements with close monitoring of the electrolyte changes and input.
Research has led to improved outcomes. Animal studies suggest that inositol reduces the severity of osmotic demyelination syndrome if given before attempting to correct chronic hyponatraemia. Further study is required before using inositol in humans for this purpose.
Acetylcysteine, also called "N"-acetylcysteine or NAC, works to reduce paracetamol toxicity by replenishing body stores of the antioxidant glutathione. Glutathione reacts with the toxic NAPQI metabolite so that it does not damage cells and can be safely excreted. NAC was usually given following a treatment nomogram (one for patients with risk factors, and one for those without) but the use of the nomogram is no longer recommended as the evidence base to support the use of risk factors was poor and inconsistent and many of the risk factors are imprecise and difficult to determine with sufficient certainty in clinical practice. Cysteamine and methionine have also been used to prevent hepatotoxicity, although studies show that both are associated with more adverse effects than acetylcysteine. Additionally, acetylcysteine has been shown to be a more effective antidote, particularly in patients presenting greater than 8 hours post-ingestion.
If the patient presents less than eight hours after paracetamol overdose, then acetylcysteine significantly reduces the risk of serious hepatotoxicity and guarantees survival. If acetylcysteine is started more than 8 hours after ingestion, there is a sharp decline in its effectiveness because the cascade of toxic events in the liver has already begun, and the risk of acute liver necrosis and death increases dramatically. Although acetylcysteine is most effective if given early, it still has beneficial effects if given as late as 48 hours after ingestion. In clinical practice, if the patient presents more than eight hours after the paracetamol overdose, then activated charcoal is not useful, and acetylcysteine is started immediately. In earlier presentations, charcoal can be given when the patient arrives and acetylcysteine is initiated while waiting for the paracetamol level results to return from the laboratory.
In United States practice, intravenous (IV) and oral administration are considered to be equally effective and safe if given within 8 hours of ingestion. However, IV is the only recommended route in Australasian and British practice. Oral acetylcysteine is given as a 140 mg/kg loading dose followed by 70 mg/kg every four hours for 17 more doses, and if the patient vomits within 1 hour of dose, the dose must be repeated. Oral acetylcysteine may be poorly tolerated due to its unpleasant taste, odor, and its tendency to cause nausea and vomiting. If repeated doses of charcoal are indicated because of another ingested drug, then subsequent doses of charcoal and acetylcysteine should be staggered.
Intravenous acetylcysteine is given as a continuous infusion over 20 hours for a total dose 300 mg/kg. Recommended administration involves infusion of a 150 mg/kg loading dose over 15 to 60 minutes, followed by a 50 mg/kg infusion over four hours; the last 100 mg/kg are infused over the remaining 16 hours of the protocol. Intravenous acetylcysteine has the advantage of shortening hospital stay, increasing both doctor and patient convenience, and allowing administration of activated charcoal to reduce absorption of both the paracetamol and any co-ingested drugs without concerns about interference with oral acetylcysteine. Intravenous dosing varies with weight, specifically in children. For patients less than 20 kg, the loading dose is 150 mg/kg in 3 mL/kg diluent, administered over 60 minutes; the second dose is 50 mg/kg in 7 mL/kg diluent over 4 hours; and the third and final dose is 100 mg/kg in 14 mL/kg diluent over 16 hours.
The most common adverse effect to acetylcysteine treatment is an anaphylactoid reaction, usually manifested by rash, wheeze, or mild hypotension. Adverse reactions are more common in people treated with IV acetylcysteine, occurring in up to 20% of patients. Alaphylactoid reactions are more likely to occur with the first infusion (the loading dose). Rarely, severe life-threatening reactions may occur in predisposed individuals, such as patients with asthma or atopic dermatitis, and may be characterized by respiratory distress, facial swelling, and even death.
If an anaphylactoid reaction occurs the acetylcysteine is temporarily halted or slowed and antihistamines and other supportive care is administered. For example, a nebulised beta-agonist like salbutamol may be indicated in the event of significant bronchospasm (or prophylactically in patients with a history of bronchospasm secondary to acetylcysteine). It is also important to closely monitor fluids and electrolytes.
In adults, the initial treatment for paracetamol overdose is gastrointestinal decontamination. Paracetamol absorption from the gastrointestinal tract is complete within two hours under normal circumstances, so decontamination is most helpful if performed within this timeframe. Gastric lavage, better known as stomach pumping, may be considered if the amount ingested is potentially life-threatening and the procedure can be performed within 60 minutes of ingestion. Activated charcoal is the most common gastrointestinal decontamination procedure as it adsorbs paracetamol, reducing its gastrointestinal absorption. Administering activated charcoal also poses less risk of aspiration than gastric lavage.
It appears that the most benefit from activated charcoal is gained if it is given within 30 minutes to two hours of ingestion. Administering activated charcoal later than 2 hours can be considered in patients that may have delayed gastric emptying due to co-ingested drugs or following ingestion of sustained- or delayed-release paracetamol preparations. Activated charcoal should also be administered if co-ingested drugs warrant decontamination. There was reluctance to give activated charcoal in paracetamol overdose, because of the concern that it may also absorb the oral antidote acetylcysteine. Studies have shown that 39% less acetylcysteine is absorbed into the body when they are administered together. There are conflicting recommendations regarding whether to change the dosing of oral acetylcysteine after the administration of activated charcoal, and even whether the dosing of acetylcysteine needs to be altered at all. Intravenous acetylcystine has no interaction with activated charcoal.
Inducing vomiting with syrup of ipecac has no role in paracetamol overdose because the vomiting it induces delays the effective administration of activated charcoal and oral acetylcysteine. Liver injury is extremely rare after acute accidental ingestion in children under 6 years of age. Children with accidental exposures do not require gastrointestinal decontamination with either gastric lavage, activated charcoal, or syrup of ipecac.
The initial aim of treatment in hypertensive crises is to rapidly lower the diastolic pressure to about 100 to 105 mmHg; this goal should be achieved within two to six hours, with the maximum initial fall in BP not exceeding 25 percent of the presenting value. This level of BP control will allow gradual healing of the necrotizing vascular lesions. More aggressive hypotensive therapy is both unnecessary and may reduce the blood pressure below the autoregulatory range, possibly leading to ischemic events (such as stroke or coronary disease).
Once the BP is controlled, the person should be switched to medication by mouth, with the diastolic pressure being gradually reduced to 85 to 90 mmHg over two to three months. The initial reduction to a diastolic pressure of approximately 100 mmHg is often associated with a modest worsening of renal function; this change, however, is typically transient as the vascular disease tends to resolve and renal perfusion improves over one to three months. Antihypertensive therapy should not be withheld in this setting unless there has been an excessive reduction in BP. A change in medication, however, is indicated if the decline in renal function is temporally related to therapy with an angiotensin (ACE) converting enzyme inhibitor or angiotensin II receptor blocker, which can interfere with renal autoregulation and produce acute renal failure in patients with bilateral renal artery stenosis. (See "Renal effects of ACE inhibitors in hypertension".)
Several parenteral antihypertensive agents are most often used in the initial treatment of malignant hypertension.
- Nitroprusside – an arteriolar and venous dilator, given as an intravenous infusion. Nitroprusside acts within seconds and has a duration of action of only two to five minutes. Thus, hypotension can be easily reversed by temporarily discontinuing the infusion, providing an advantage over the drugs listed below. However, the potential for cyanide toxicity limits the prolonged use of nitroprusside, particularly in patients with renal insufficiency.
- Nicardipine – an arteriolar dilator, given as an intravenous infusion.
- Clevidipine – a short-acting dihydropyridine calcium channel blocker. It reduces blood pressure without affecting cardiac filling pressures or causing reflex tachycardia.
- Labetalol – an alpha- and beta-adrenergic blocker, given as an intravenous bolus or infusion. Bolus followed by infusion.
- Fenoldopam – a peripheral dopamine-1 receptor agonist, given as an intravenous infusion.
- Oral agents — A slower onset of action and an inability to control the degree of BP reduction has limited the use of oral antihypertensive agents in the therapy of hypertensive crises. They may, however, be useful when there is no rapid access to the parenteral medications described above. Both sublingual nifedipine and sublingual captopril can substantially lower the BP within 10 to 30 minutes in many patients. A more rapid response is seen when liquid nifedipine is swallowed.
The major risk with oral agents is ischemic symptoms (e.g., angina pectoris, myocardial infarction, or stroke) due to an excessive and uncontrolled hypotensive response. Thus, their use should generally be avoided in the treatment of hypertensive crises if more controllable drugs are available.
Impaired liver synthesis of clotting factors, low-grade fibrinolysis, and intravascular coagulation are typical of ALF. Thrombocytopenia is common and may also be dysfunctional. Replacement therapy is recommended only in the setting of bleeding or prior to an invasive procedure. Vitamin K can be given to treat an abnormal prothrombin time, regardless of whether there is poor nutritional status. Administration of recombinant factor VIIa has shown promise; however, this treatment approach requires further study. The use of gastrointestinal hemorrhage prophylaxis with a histamine-2 (H2) blocker, proton pump inhibitor, or sucralfate is recommended.
Patients with grade I–II encephalopathy should be transferred to a liver transplant facility and listed for transplantation. Consider a brain computed tomography (CT) scan to rule out other causes of altered or impaired mental status. Stimulation and overhydration can cause elevations in intracranial pressure (ICP) and should be avoided. Unmanageable agitation may be treated with short-acting benzodiazepines in small doses. Lactulose can be considered at this stage. A preliminary report from the ALFSG on 117 patients suggests that use of lactulose in the first 7 days after diagnosis is associated with a small increase in survival time, but with no difference in severity of encephalopathy or in the overall outcome. For patients who progress to grade III–IV encephalopathy, intubation for airway protection is generally required. Many centers use propofol for sedation because it may reduce cerebral blood. The head of the bed should be elevated to 30 degrees, and electrolytes, blood gasses, glucose, and neurologic status monitored frequently.
Most symptoms will improve quickly if deficiencies are treated early. Memory disorder may be permanent.
In patients suspected of WE, thiamine treatment should be started immediately. Blood should be immediately taken to test for thiamine, other vitamins and minerals levels. Following this an immediate intravenous or intramuscular dose of thiamine should be administered two or three times daily. Thiamine administration is usually continued until clinical improvement ceases.
Considering the diversity of possible causes and several surprising symptomatologic presentations, and because there is low assumed risk of toxicity of thiamine, because the therapeutic response is often dramatic from the first day, some qualified authors indicate parenteral thiamine if WE is suspected, both as a resource for diagnosis and treatment. The diagnosis is highly supported by the response to parenteral thiamine, but is not sufficient to be excluded by the lack of it. Parenteral thiamine administration is associated with a very small risk of anaphylaxis.
Alcohol abusers may have poor dietary intakes of several vitamins, and impaired thiamine absorption, metabolism, and storage; they may thus require higher doses.
If glucose is given, such as in hypoglycaemic alcoholics, thiamine must be given concurrently. If this is not done, the glucose will rapidly consume the remaining thiamine reserves, exacerbating this condition.
The observation of edema in MR, and also the finding of inflation and macrophages in necropsied tissues, has led to successful administration of antiinflammatories.
Other nutritional abnormalities should also be looked for, as they may be exacerbating the disease. In particular, magnesium, a cofactor of transketolase which may induce or aggravate the disease.
Other supplements may also be needed, including: cobalamin, ascorbic acid, folic acid, nicotinamide, zinc, phosphorus (dicalcium phosphate) and in some cases taurine, especially suitable when there cardiocirculatory impairment.
Patient-guided nutrition is suggested. In patients with Wernicke-Korsakoff syndrome, even higher doses of parenteral thiamine are recommended. Concurrent toxic effects of alcohol should also be considered.
In the past, treatment options were limited to supportive medical therapy. Nowadays neonatal encephalopathy is treated using hypothermia therapy.
Toxic encephalopathy is often irreversible. If the source of the problem is treated by removing the toxic chemical from the system, further damage can be prevented, but prolonged exposure to toxic chemicals can quickly destroy the brain. Long term studies have demonstrated residual cognitive impairment (primarily attention and information-processing impairment resulting in dysfunction in working memory) up to 10 years following cessation of exposure. Severe cases of toxic encephalopathy can be life-threatening.
There is currently no specific therapy. Intravenous fluids and treatment of the hepatic encephalopathy may help. Increasing dietary levels of branched chain amino acids and feeding low protein diets can help signs of hepatic encephalopathy, which is often accomplished by feeding small amounts of grain and/or beet pulp, and removing high-protein feedstuffs such as alfalfa hay. Grazing on non-legume grass may be acceptable if it is late summer or fall, although the horse should only be permitted to eat in the evening so as to avoid photosensitization. Due to the risk of gastric impaction, stomach size should be monitored.
Sedation is minimized and used only to control behavior that could lead to injury of the animal and to allow therapeutic procedures, and should preferably involve a sedative other than a benzodiazepine. Stressing the animal should be avoided if at all possible. Plasma transfusions may be needed if spontaneous bleeding occurs, to replace clotting factors. Antibiotics are sometimes prescribed to prevent bacterial translocation from the intestines. Antioxidants such as vitamin E, B-complex vitamins, and acetylcysteine may be given. High blood ammonia is often treated with oral neomycin, often in conjunction with lactulose, metronidazole and probiotics, to decrease production and absorption of ammonia from the gastrointestinal tract.
There are hospital protocols for prevention, supplementing with thiamine in the presence of: history of alcohol misuse or related seizures, requirement for IV glucose, signs of malnutrition, poor diet, recent diarrhea or vomiting, peripheral neuropathy, intercurrent illness, delirium tremens or treatment for DTs, and others. Some experts advise parenteral thiamine should be given to all at-risk patients in the emergency room.
In the clinical diagnosis should be remembered that early symptoms are nonspecific, and it has been stated that WE may present nonspecific findings. There is consensus to provide water-soluble vitamins and minerals after gastric operations.
In some countries certain foods have been supplemented with thiamine, and have reduced WE cases. Improvement is difficult to quantify because they applied several different actions. Avoiding alcohol and having adequate nutrition reduces one of the main risk factors in developing Wernicke-Korsakoff syndrome.
Abdominal pain is often the predominant symptom in patients with acute pancreatitis and should be treated with analgesics.
Opioids are safe and effective at providing pain control in patients with acute pancreatitis. Adequate pain control requires the use of intravenous opiates, usually in the form of a patient-controlled analgesia pump. Hydromorphone or fentanyl (intravenous) may be used for pain relief in acute pancreatitis. Fentanyl is being increasingly used due to its better safety profile, especially in renal impairment. As with other opiates, fentanyl can depress respiratory function. It can be given both as a bolus as well as constant infusion.
Meperidine has been historically favored over morphine because of the belief that morphine caused an increase in sphincter of Oddi pressure. However, no clinical studies suggest that morphine can aggravate or cause pancreatitis or cholecystitis. In addition, meperidine has a short half-life and repeated doses can lead to accumulation of the metabolite normeperidine, which causes neuromuscular side effects and, rarely, seizures.
Patients with hypertensive encephalopathy who are promptly treated usually recover without deficit. However, if treatment is not administered, the condition can lead to death.
Treatment is supportive with the use of antibiotics, blood products, colony stimulating factors, and stem cell transplant as clinically indicated. Symptomatic measures may also be employed.
Like diagnosis, treating CSE is difficult due to how vaguely defined it is, as well as lack of data on the mechanism of CSE effects on neural tissue. There is no existing treatment that is effective at completely recovering any neurological or physical function lost due to CSE. This is believed to be because of the limited regeneration capabilities in the central nervous system. Furthermore, existing symptoms of CSE can potentially worsen with age. Some symptoms of CSE, such as depression and sleep issues, can be treated separately, and therapy is available to help patients adjust to any disabilities. Current treatment for CSE involves treating accompanying psychopathology, symptoms, and preventing further deterioration.
Mild and moderate cerebral hypoxia generally has no impact beyond the episode of hypoxia; on the other hand, the outcome of severe cerebral hypoxia will depend on the success of damage control, amount of brain tissue deprived of oxygen, and the speed with which oxygen was restored.
If cerebral hypoxia was localized to a specific part of the brain, brain damage will be localized to that region. A general consequence may be epilepsy. The long-term effects will depend on the purpose of that portion of the brain. Damage to the Broca's area and the Wernicke's area of the brain (left side) typically causes problems with speech and language. Damage to the right side of the brain may interfere with the ability to express emotions or interpret what one sees. Damage on either side can cause paralysis of the opposite side of the body.
The effects of certain kinds of severe generalized hypoxias may take time to develop. For example, the long-term effects of serious carbon monoxide poisoning usually may take several weeks to appear. Recent research suggests this may be due to an autoimmune response caused by carbon monoxide-induced changes in the myelin sheath surrounding neurons.
If hypoxia results in coma, the length of unconsciousness is often indicative of long-term damage. In some cases coma can give the brain an opportunity to heal and regenerate, but, in general, the longer a coma, the greater the likelihood that the person will remain in a vegetative state until death. Even if the patient wakes up, brain damage is likely to be significant enough to prevent a return to normal functioning.
Long-term comas can have a significant impact on a patient's families. Families of coma victims often have idealized images of the outcome based on Hollywood movie depictions of coma. Adjusting to the realities of ventilators, feeding tubes, bedsores, and muscle wasting may be difficult. Treatment decision often involve complex ethical choices and can strain family dynamics.
A 2006 Cochrane review did not find evidence sufficient for the use of androgenic anabolic steroids. Corticosteroids are sometimes used; however, this is recommended only when severe liver inflammation is present.
Sylimarin has been investigated as a possible treatment, with ambiguous results. One review claimed benefit for S-adenosyl methionine in disease models.
The effects of anti–tumor necrosis factor medications such as infliximab and etanercept are unclear and possibly harmful. Evidence is unclear for pentoxifylline. Propylthiouracil may result in harm.
Evidence does not support supplemental nutrition in liver disease.
The following therapeutic drugs were withdrawn from the market primarily because of hepatotoxicity: Troglitazone, bromfenac, trovafloxacin, ebrotidine, nimesulide, nefazodone, ximelagatran and pemoline.
As of 2014, no treatment strategy has yet been investigated in a randomized clinical trial. Verapamil, nimodipine, and other calcium channel blockers may help reduce the intensity and frequency of the headaches. A clinician may recommend rest and the avoidance of activities or vasoactive drugs which trigger symptoms (see § Causes). Analgesics and anticonvulsants can help manage pain and seizures, respectively.