Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A 2013 Cochrane review assessed clinical studies on surgical (open reduction) and non-surgical (closed reduction) management of mandible fractures that do not involve the condyle. The review found insufficient evidence to recommend the effectiveness of any single intervention.
A Cochrane review of low-intensity pulsed ultrasound to speed healing in newly broken bones found insufficient evidence to justify routine use. Other reviews have found tentative evidence of benefit. It may be an alternative to surgery for established nonunions.
Vitamin D supplements combined with additional calcium marginally reduces the risk of hip fractures and other types of fracture in older adults; however, vitamin D supplementation alone did not reduce the risk of fractures.
This treatment consists of aligning a bone or bones by a gentle, steady pulling action. The pulling may be transmitted to the bone or bones by a metal pin through a bone or by skin tapes. This is a preliminary treatment used in preparation for other secondary treatments.
Treatment of this fracture depends on the severity of the fracture. An undisplaced fracture may be treated with a cast alone. A fracture with mild angulation and displacement may require closed reduction. Significant angulation and deformity may require an open reduction and internal fixation. An open fracture will always require surgical intervention.
The best treatment for condylar fractures is controversial. There are two main options, namely closed reduction or open reduction and fixation. Closed reduction may involve intermaxillary fixation, where the jaws are splinted together in the correct position for a period of weeks. Open reduction involves surgical exposure of the fracture site, which can be carried out via incisions within the mouth or incisions outside the mouth over the area of the condyle. Open reduction is sometimes combined with use of an endoscope to aid visualization of fracture site. Although closed reduction carries a risk of the bone healing out of position, with consequent alteration of the bite or the creation of facial asymmetry, it does not risk temporary damage to the facial nerve or result in any facial scar that accompanies open reduction. A systematic review was unable to find sufficient evidence of the superiority of one method over another in the management of condylar fractures. Paediatric condylar fractures are especially problematic, owing to the remaining growth potential and possibility of ankylosis of the joint. Early mobilization is often recommended as in the Walker protocol.
This treatment is only used when an orthopedic surgeon assigns it to restore the fractured bone to its original function. This method positions the bones to their exact location, but there is a risk for infection and other complications. The procedure involves the orthopedist performing surgery on the bone to align the bone fragments, followed by the placement of special screws or metal plates to the outer surface of the bone. The fragments can also be held together by running metal rods through the marrow in the center of the bone.
Surgical methods of treating fractures have their own risks and benefits, but usually surgery is performed only if conservative treatment has failed, is very likely to fail, or likely to result in a poor functional outcome. With some fractures such as hip fractures (usually caused by osteoporosis), surgery is offered routinely because non-operative treatment results in prolonged immobilisation, which commonly results in complications including chest infections, pressure sores, deconditioning, deep vein thrombosis (DVT), and pulmonary embolism, which are more dangerous than surgery. When a joint surface is damaged by a fracture, surgery is also commonly recommended to make an accurate anatomical reduction and restore the smoothness of the joint.
Infection is especially dangerous in bones, due to the recrudescent nature of bone infections. Bone tissue is predominantly extracellular matrix, rather than living cells, and the few blood vessels needed to support this low metabolism are only able to bring a limited number of immune cells to an injury to fight infection. For this reason, open fractures and osteotomies call for very careful antiseptic procedures and prophylactic use of antibiotics.
Occasionally, bone grafting is used to treat a fracture.
Sometimes bones are reinforced with metal. These implants must be designed and installed with care. "Stress shielding" occurs when plates or screws carry too large of a portion of the bone's load, causing atrophy. This problem is reduced, but not eliminated, by the use of low-modulus materials, including titanium and its alloys. The heat generated by the friction of installing hardware can accumulate easily and damage bone tissue, reducing the strength of the connections. If dissimilar metals are installed in contact with one another (i.e., a titanium plate with cobalt-chromium alloy or stainless steel screws), galvanic corrosion will result. The metal ions produced can damage the bone locally and may cause systemic effects as well.
The use of surgery to treat a Jefferson fracture is somewhat controversial. Non-surgical treatment varies depending on if the fracture is stable or unstable, defined by an intact or broken transverse ligament and degree of fracture of the anterior arch. An intact ligament requires the use of a soft or hard collar, while a ruptured ligament may require traction, a halo or surgery. The use of rigid halos can lead to intracranial infections and are often uncomfortable for individuals wearing them, and may be replaced with a more flexible alternative depending on the stability of the injured bones, but treatment of a stable injury with a halo collar can result in a full recovery. Surgical treatment of a Jefferson fracture involves fusion or fixation of the first three cervical vertebrae; fusion may occur immediately, or later during treatment in cases where non-surgical interventions are unsuccessful. A primary factor in deciding between surgical and non-surgical intervention is the degree of stability as well as the presence of damage to other cervical vertebrae.
Though a serious injury, the long-term consequences of a Jefferson's fracture are uncertain and may not impact longevity or abilities, even if untreated. Conservative treatment with an immobilization device can produce excellent long-term recovery.
Most hip fractures are treated surgically by implanting an orthosis. Surgical treatment outweighs the risks of nonsurgical treatment which requires extensive bedrest. Prolonged immobilization increases risk of thromboembolism, pneumonia, deconditioning, and decubitus ulcers. Regardless, the surgery is a major stress, particularly in the elderly. Pain is also significant, and can also result in immobilization, so patients are encouraged to become mobile as soon as possible, often with the assistance of physical therapy. Skeletal traction pending surgery is not supported by the evidence. Regional nerve blocks are useful for pain management in hip fractures.
Red blood cell transfusion is common for people undergoing hip fracture surgery due to the blood loss sustained during surgery and from the injury. Adverse effects of blood transfusion may occur and are avoided by restrictive use of blood transfusion rather than liberal use. Restrictive blood transfusion is based on symptoms of anemia and thresholds lower than the 10 g/dL haemoglobin used for liberal blood transfusion.
If operative treatment is refused or the risks of surgery are considered to be too high the main emphasis of treatment is on pain relief. Skeletal traction may be considered for long term treatment. Aggressive chest physiotherapy is needed to reduce the risk of pneumonia and skilled rehabilitation and nursing to avoid pressure sores and DVT/pulmonary embolism Most people will be bedbound for several months. Non-operative treatment is now limited to only the most medically unstable or demented patients, or those who are nonambulatory at baseline with minimal pain during transfers.
Initial treatment is typically in a cast, without any weight being placed on it, for at least six weeks. If after this period of time healing has not occurred a further six weeks of casting may be recommended. Up to half, however may not heal after casting.
In athletes or if the pieces of bone are separated by more than 2 mm surgery may be considered. Otherwise surgery is recommended if healing does not occur after 12 weeks of casting.
Rehabilitation has been proven to increase daily functional status. It is unclear if the use of anabolic steroids effects recovery.
The first line treatment should be reduction of movements for 6 to 12 weeks. Wooden-soled shoes or a cast should be given for this purpose. In rare cases in which stress fracture occurs with a cavus foot, plantar fascia release may be appropriate.
Galeazzi fractures are best treated with open reduction of the radius and the distal radio-ulnar joint. It has been called the "fracture of necessity," because it necessitates open surgical treatment in the adult. Nonsurgical treatment results in persistent or recurrent dislocations of the distal ulna. However, in skeletally immature patients such as children, the fracture is typically treated with closed reduction.
The aim of treatment is to minimize pain and to restore as much normal function as possible. Most humerus fractures do not require surgical intervention. One-part and two-part proximal fractures can be treated with a collar and cuff sling, adequate pain medicine, and follow up therapy. Two-part proximal fractures may require open or closed reduction depending on neurovascular injury, rotator cuff injury, dislocation, likelihood of union, and function. For three- and four-part proximal fractures, standard practice is to have open reduction and internal fixation to realign the separate parts of the proximal humerus. A humeral hemiarthroplasty may be required in proximal cases in which the blood supply to the region is compromised. Fractures of the humerus shaft and distal part of the humerus are most often uncomplicated, closed fractures that require nothing more than pain medicine and wearing a cast or sling for a few weeks. In shaft and distal cases in which complications such as damage to the neurovascular bundle exist, then surgical repair is required.
Undisplaced fracture can usually be treated by casting. Even some displaced fractures can be treated with casting as long as a person can straighten their leg without help. Typically the leg is immobilized in a straight position for the first three weeks and then increasing degrees of bending are allowed.
Preventive and restorative care are important as well as esthetics as a consideration. This ensures preservation of the patient's vertical face height between their upper and lower teeth when they bite together. The basis of treatment is standard throughout the different types of DI where prevention, preservation of occlusal face height, maintenance of function, and aesthetic needs are priority. Preventive efforts can limit pathology occurring within the pulp, which may render future endodontic procedures less challenging, with better outcomes.
- Challenges are associated with root canal treatment of teeth affected by DI due to pulp chamber and root canal obliteration, or narrowing of such spaces.
- If root canal treatment is indicated, it should be done in a similar way like with any other tooth. Further consideration is given for restoring the root-treated tooth as it has weaker dentine which may not withstand the restoration.
Preservation of occlusal face height may be tackled by use of stainless steel crowns which are advocated for primary teeth where occlusal face height may be hugely compromised due to loss of tooth tissue as a result of attrition, erosion of enamel.
In most cases, full-coverage crowns or veneers (composite/porcelain) are needed for aesthetic appearance, as well as to prevent further attrition. Another treatment option is bonding, putting lighter enamel on the weakened enamel of the teeth and with lots of treatments of this bonding, the teeth appear whiter to the eye, but the teeth on the inside and under that cover are still the same. Due to the weakened condition of the teeth, many common cosmetic procedures such as braces and bridges are inappropriate for patients with Dentinogenesis imperfecta and are likely to cause even more damage than the situation they were intended to correct.
Dental whitening (bleaching) is contraindicated although it has been reported to lighten the color of DI teeth with some success; however, because the discoloration is caused primarily by the underlying yellow-brown dentin, this alone is unlikely to produce normal appearance in cases of significant discoloration.
If there is considerable attrition, overdentures may be prescribed to prevent further attrition of remaining teeth and for preserving the occlusal face height.
If intraarticular trapeziometacarpal fractures (such as the Bennett or Rolando fractures) are allowed to heal in a displaced position, significant post-traumatic osteoarthritis of the base of the thumb is virtually assured. Some form of surgical treatment (typically either a CRPP or an ORIF) is nearly always recommended to ensure a satisfactory outcome for these fractures, if there is significant displacement.
The long-term outcome after surgical treatment appears to be similar, whether the CRPP or the ORIF approach is used. Specifically, the overall strength of the affected hand is typically diminished, and post-traumatic osteoarthritis tends to develop in almost all cases. The degree of weakness and the severity of osteoarthritis does however appear to correlate with the quality of reduction of the fracture. Therefore, the goal of treatment of Bennett fracture should be to achieve the most precise reduction possible, whether by the CRPP or the ORIF approach.
Treatment may be with or without surgery, depending on the type of fracture.
Preventive maintenance therapy for the oral effects of TDO involve frequent dental cleanings, professional application of desensitizing medication, diet counseling, and oral hygiene instructions in proper home care and maintenance; medicated dental rinses and toothpastes are also prescribed as people suffering from TDO are more prone to oral hard tissue disease and early tooth loss. If restorative dentistry is performed without orthodontics to correct the protrusion of the lower jaw, a dental night guard worn at bedtimes on the upper or lower teeth to protect them from the effects of grinding may be recommended.
In extreme cases, tooth loss is inevitable, and the patient will consult with a prosthodontist to determine tooth replacement options such as dental implants, or partial dentures. There is no cure for TDO, but managing its oral and systemic affects is key to having the most favorable outcome from the disease. As the person affected by TDO ages, increased bone fractures may occur. The person suffering from TDO should watch for any pimple like masses on the gum tissue, pain or soreness in the teeth and gums, broken or chipped teeth, feeling of water in the ear or severe pain in the extremities which could indicate fracture.
Endodontic intervention can help conserve the existing health of affected permanent teeth. It is difficult to perform an endodontic therapy on teeth that develop abscesses as a resultant of obliteration of the pulp chambers and root canals. An alternative to conventional therapy would be retrograde filling and periapical curettage. However, these therapies are not recommended for teeth with roots that are too short.
Though these fractures commonly appear quite subtle or even inconsequential on radiographs, they can result in severe long-term dysfunction of the hand if left untreated. In his original description of this type of fracture in 1882, Bennett stressed the need for early diagnosis and treatment in order to prevent loss of function of the thumb CMC joint, which is critical to the overall function of the hand.
- In the most minor cases of Bennett fracture, there may be only small avulsion fractures, relatively little joint instability, and minimal subluxation of the CMC joint (less than 1 mm). In such cases, closed reduction followed by immobilization in a thumb spica cast and serial radiography may be all that is required for effective treatment.
- For Bennett fractures where there is between 1 mm and 3 mm of displacement at the trapeziometacarpal joint, closed reduction and percutaneous pin fixation (CRPP) with Kirschner wires is often sufficient to ensure a satisfactory functional outcome. The wires are not employed to connect the two fracture fragments together, but rather to secure the first or second metacarpal to the trapezium.
- For Bennett fractures where there is more than 3 mm of displacement at the trapeziometacarpal joint, open reduction and internal fixation (ORIF) is typically recommended.
Regardless of which approach is employed (nonsurgical, CRPP, or ORIF), immobilization in a cast or thumb spica splint is required for four to six weeks.
Treatment may include smoothing, fluoride treatment, and crown restoration.
Cosmetic or functional intervention may be required if tooth surface loss is pathological or if there has been advanced loss of tooth structure. The first stage of treatment involves managing any associated conditions, such as fractured teeth or sharp cusps or incisal edges. These can be resolved by restoring and polishing sharp cusps. Then, desensitizing agents such as topical fluoride varnishes can be applied, and at home desensitising toothpastes recommended. Many restorative options have been proposed, such as direct composite restorations, bonded cast metal restorations, removable partial dentures, orthodontic treatment, crown lengthening procedures and protective splints. The decision to restore the dentition depends on the wants and needs of the patient, the severity of tooth surface loss and whether tooth surface loss is active. The use of adhesive materials to replace lost tooth structure can be performed as a conservative and cost-effective approach before a more permanent solution of crowns or veneers is considered.
Stainless steel crowns which also known as "hall crowns" can prevent tooth wear and maintain occlusal dimension in affected primary teeth. However, if demanded, composite facings or composite strip crowns can be added for aesthetic reasons.