Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Operations that attempt to restore a blood supply to the lunate may be performed.
Depending on the stage the disease is in when it is discovered, varying treatments are applied.
If X-rays show a mostly intact lunate (not having lost a great deal of size, and not having been compressed into a triangular shape), but an MRI shows a lack of blood flow to the bone, then revascularization is normally attempted. Revascularization techniques, usually involving a bone graft taken elsewhere from the body — often held in place by an external fixator for a period of weeks or months — have been successful at stages as late as 3B, although their use at later stages (like most treatments for Kienböck's) is controversial.
One conservative treatment option would be using an Ultrasound Bone Stimulator, which uses low-intensity pulsed ultrasound to increase vascular endothelial growth factor (VEG-F) and increase blood flow to the bone.
Some Kienböck's patients present with an abnormally large difference in length between the radius and the ulna, termed "ulnar variance", which is hypothesized to cause undue pressure on the lunate, contributing to its avascularity. In cases with such a difference, "radial shortening" is commonly performed. In this procedure, the radius (the lateral long bone) is shortened by a given length, usually between 2 and 5 mm, to relieve the pressure on the dying lunate. A titanium plate is inserted to hold the newly shortened bone together.
During Stage 3, the lunate has begun to break apart due to the pressure of the surrounding bones. This causes sharp fragments of bone to float between the joints, causing excruciating pain. At this point, the lunate is ready for removal. The most frequently performed surgery is the "Proximal Row Carpectomy", where the lunate, scaphoid and triquetrum are extracted. This greatly limits the range of motion of the wrist, but pain relief can be achieved for longer than after the other surgeries.
Another surgical option for this stage is a titanium, silicon or pyrocarbon implant that takes place of the lunate, though doctors shy from this due to a tendency of the implant to smooth the edges of the surrounding bones, thus causing painful pinched nerves when the bones slip out of place.
After the lunate is removed, another procedure, "ulnar shortening" can be performed. This relieves pressure on the newly formed wrist joint of the pisiform, hamate and capitate. Depending on the surgeon, the procedure may be performed the same way as the "radial shortening" where a small section is removed, or the entire top of the ulna may be excised.
At Stage 4, the lunate has completely disintegrated and the other bones in the wrist have radiated downward to fill in the void. The hand now has a deformed, crippled appearance. The only procedure that can be done is the "total wrist fusion", where a plate is inserted on the top of the wrist from the radius to the carpals, effectively freezing all flexion and movement in the wrist. Rotation is still possible as it is controlled by the radius and ulna.
This is currently the last and most complete surgical option for Kienböck's sufferers.
Most of the treatments described here are not mutually exclusive — meaning that a single patient may receive many of them in his quest to relieve pain. For instance, some patients have had casting, bone graft, radial shortening, proximal row carpectomy, and wrist fusion, all on the same hand.
The use of steroids (Dexamethasone) coupled with an antibiotic (Amoxicillin) will support the kitten in a number of ways, the steroid enhancing maturation and the antibiotic addressing the possibility of underlying infection and compensating for the immuno-depressant properties of the steroid. The steroid will also encourage the kitten to feed more energetically, keeping its weight up. Several breeders believe that Taurine plays a part in the condition, and it may be that some cases are Taurine-related. These breeders give the queen large doses of Taurine (1000 mg) daily until the kittens recover – apparently within a few days. Given that most FCKS cases take weeks rather than days to recover, this supplement may be relevant.
Embouchure collapse caused by focal dystonia can be diagnosed medically; embouchure collapse caused by embouchure overuse, however, is generally speaking not considered to be a specifically medical issue. A difficulty in diagnosis is that when a brass player describes the symptoms to a doctor or dentist (as is often the case), the medical practitioner does not fully understand what the patient means. This is because brass players learn their embouchure by "feel," and therefore words have a limited ability to describe embouchure problems, especially if the person listening to the description is not a brass player and has a limited knowledge of the embouchure.
Also, in less severe cases, the player may only be able to feel what is wrong while playing. Many players with an embouchure problem will, once they have realized that it is more than a simple case of tired lips, wish to refrain from playing. The fact that around 24 muscles are employed in forming a brass embouchure, and that each will change slightly as a player struggles to play when experiencing embouchure problems, mean that what players describe as being wrong will have not only worsened their condition when they play, but will be different each time they do so.
In the severest cases, the pain caused by embouchure overuse can be felt even when not playing; in some cases, other symptoms will manifest, such as loss of tissue and damaged nerves. This, however, occurs only in the rarest and most extreme circumstances and usually signals the end of the player's career.
Prevention is a more successful strategy than treatment. By using the most conservative decompression schedule reasonably practicable, and by minimizing the number of major decompression exposures, the risk of DON may be reduced. Prompt treatment of any symptoms of decompression sickness (DCS) with recompression and hyperbaric oxygen also reduce the risk of subsequent DON.
Treatment is difficult to define given the number of different causes and the wealth of anecdotal information collected by and from cat breeders. Treatments have hitherto been based on the assumption that FCKS is caused by a muscular spasm, and their effectiveness is impossible to assess because some kittens will recover spontaneously without intervention.
Diaphragmatic spasm is easily tested for and treated by short term interruption of the Phrenic nerve. The nerve runs down the outside of the neck where the neck joins to the shoulder, within a bundle of muscles and tendons at this junction. The cluster can be pinched gently and held for a few seconds each time. Kittens with spasmodic FCKS will show almost immediate improvement, but the treatment may need to be repeated several times over a few days as the spasm may have a tendency to recur. [Um für diapragmatisch Sparmus zu prüfen, Sie müssen der Phrenikus finden (es heisst auch der Zwerchfellnerv), der lauft am aussen des Hals, wo der Hals trifft die Schulter. Da gibt es mehrere Muskeln und Sehnen–da es unmoeglich ist die Nerv allein zu finden bzw. kneifen, müssen Sie die ganze Menge zusammen ruhig kneifen für ein paar Sekunden. Wenn es doch diapragmatisch Spasmus ist und Sie das Phrenikus gut kneifest (manchmal aber nicht immer werde die Katze mit den hinteren Beinen kicken), sollen Sie sofort eine Verbesserung anschauen. Es kann sein, dass die Spasmus wieder kommt nachher im kommenden Tage—in dem Fall müssen Sie es nochmal machen. Wenn Sie aber keine Verbesserung siehst, ist der Problem dann leider etwas anders.]
Continuous positive air pressure (CPAP) is used in human babies with lung collapse, but this is impossible with kittens. It is possible that the success of some breeders in curing kittens by splinting the body, thus putting pressure on the ribcage, was successful as it has created the effect of positive air pressure, thus gradually re-inflating the lungs by pulling them open rather than pushing them open as is the case with CPAP.
Treatment is difficult, often requiring a joint replacement. Spontaneous improvement occasionally happens and some juxta-articular lesions do not progress to collapse. Other treatments include immobilization and osteotomy of the femur. Cancellous bone grafts are of little help.
Embouchure collapse is a generic term used by wind instrument players to describe a variety of conditions which result in the inability of the embouchure to function. The embouchure is the purposeful arrangement of the facial muscles and lips to produce a sound on a wind or brass instrument. In brass playing, it involves vibration of the membrane area of the lips.
Embouchure collapse in its various forms and extremities generally results in difficulty in playing for extended periods (especially if playing loudly and/or in the high register) or a complete inability to play. The former applies mainly in less severe cases; the latter in the most severe cases.
This article focuses on embouchure collapse in brass players.
The goals of treatment are to decrease pain, reduce the loss of hip motion, and prevent or minimize permanent femoral head deformity so that the risk of developing a severe degenerative arthritis as adult can be reduced. Assessment by a pediatric orthopaedic surgeon is recommended to evaluate risks and treatment options. Younger children have a better prognosis than older children.
Treatment has historically centered on removing mechanical pressure from the joint until the disease has run its course. Options include traction (to separate the femur from the pelvis and reduce wear), braces (often for several months, with an average of 18 months) to restore range of motion, physiotherapy, and surgical intervention when necessary because of permanent joint damage. To maintain activities of daily living, custom orthotics may be used. Overnight traction may be used in lieu of walking devices or in combination. These devices internally rotate the femoral head and abduct the leg(s) at 45°. Orthoses can start as proximal as the lumbar spine, and extend the length of the limbs to the floor. Most functional bracing is achieved using a waist belt and thigh cuffs derived from the Scottish-Rite orthosis. These devices are typically prescribed by a physician and implemented by an orthotist. Clinical results of the Scottish Rite orthosis have not been good according to some studies, and its use has gone out of favor. Many children, especially those with the onset of the disease before age 6, need no intervention at all and are simply asked to refrain from contact sports or games which impact the hip. For older children (onset of Perthes after age 6), the best treatment option remains unclear. Current treatment options for older children over age 8 include prolonged periods without weight bearing, osteotomy (femoral, pelvic, or shelf), and the hip distraction method using an external fixator which relieves the hip from carrying the body's weight. This allows room for the top of the femur to regrow. The Perthes Association has a "library" of equipment which can be borrowed to assist with keeping life as normal as possible, newsletters, a helpline, and events for the families to help children and parents to feel less isolated.
While running and high-impact sports are not recommended during treatment for Perthes disease, children can remain active through a variety of other activities that limit mechanical stress on the hip joint. Swimming is highly recommended, as it allows exercise of the hip muscles with full range of motion while reducing the stress to a minimum. Cycling is another good option as it also keeps stress to a minimum. Physiotherapy generally involves a series of daily exercises, with weekly meetings with a physiotherapist to monitor progress. These exercises focus on improving and maintaining a full range of motion of the femur within the hip socket. Performing these exercises during the healing process is essential to ensure that the femur and hip socket have a perfectly smooth interface. This will minimize the long-term effects of the disease. Use of bisphosphonate such as zoledronate or ibandronate is currently being investigated, but definite recommendations are not yet available.
Perthes disease is self-limiting, but if the head of femur is left deformed, long-term problems can occur. Treatment is aimed at minimizing damage while the disease runs its course, not at 'curing' the disease. It is recommended not to use steroids or alcohol as these reduce oxygen in the blood which is needed in the joint. As sufferers age, problems in the knee and back can arise secondary to abnormal posture and stride adopted to protect the affected joint. The condition is also linked to arthritis of the hip, though this appears not to be an inevitable consequence. Hip replacements are relatively common as the already damaged hip suffers routine wear; this varies by individual, but generally is required any time after age 50.
Time is the only treatment necessary in more than 90% of infant cases. In other cases, surgery may be necessary. Most commonly, this involves cutting the aryepiglottic folds to let the supraglottic airway spring open. Trimming of the arytenoid cartilages or the mucosa/ tissue over the arytenoid cartilages can also be performed as part of the supraglottoplasty. Supraglottoplasty can be performed bilaterally (on both the left and right sides at the same time), or be staged where only one side is operated on at a time.
Treatment of gastroesophageal reflux disease can also help in the treatment of laryngomalacia, since gastric contents can cause the back part of the larynx to swell and collapse even further into the airway.
In some cases, a temporary tracheostomy may be necessary.
It is ethically difficult when it comes to dealing with diagnosed patients, for many of them deny their poor conditions and refuse to accept treatment. The main objectives of the doctors are to help improve the patient’s lifestyle and wellbeing, so health care professionals must decide whether or not to force treatment onto their patient.
In some cases, especially those including the inability to move, patients have to consent to help, since they cannot manage to look after themselves. Hospitals or nursing homes are often considered the best treatment under those conditions.
When under care, patients must be treated in a way in which they can learn to trust the health care professionals. In order to do this, the patients should be restricted in the number of visitors they are allowed, and be limited to 1 nurse or social worker. Some patients respond better to psychotherapy, while others to behavioral treatment or terminal care.
Results after hospitalization tend to be poor. Research on the mortality rate during hospitalization has shown that approximately half the patients die while in the hospital. A quarter of the patients are sent back home, while the other quarter are placed in long time care. Patients under care in hospitals and nursing homes often slide back into relapse or face death.
There are other approaches to improve the patient’s condition. Day care facilities have often been successful with maturing the patient’s physical and emotional state, as well as helping them with socialization. Other methods include services inside the patient’s home, such as the delivery of food.
Laryngomalacia becomes symptomatic after the first few months of life (2–3 months), and the stridor may get louder over the first year, as the child moves air more vigorously. Most of the cases resolve spontaneously and less than 15% of the cases will need surgical intervention. Parents need to be supported and educated about the condition.
Preiser disease, or (idiopathic) avascular necrosis of the scaphoid, is a rare condition where ischemia and necrosis of the scaphoid bone occurs without previous fracture. It is thought to be caused by repetitive microtrauma or side effects of drugs (e.g., steroids or chemotherapy) in conjunction with existing defective vascular supply to the proximal pole of the scaphoid. MRI coupled with CT and X-ray are the methods of choice for diagnosis.
Preiser's disease is initially treated by immobilising the wrist with a cast. However, in most cases the avascular scaphoid will start to collapse leading to degeneration within the wrist joints. This often requires surgical intervention to prevent the progression of arthris. Two commonly performed procedures are:
1. Proximal row carpectomy (PRC), which involves removing the first row of the carpal bones, i.e. the scaphoid, lunate and triquetrum. The wrist is immobilised in a cast for six weeks after the surgery and then physiotherapy is started.
2. Scaphoid excision and 4-corner fusion, which is a procedure consisting of the removal of the scaphoid and fixation of the remaining wrist bones with a plate (called a "spider plate") or wires in order to provide stability. The plate usually is left inside the patient's wrist, while the wires (usually K-wires) have to be removed in a second surgery. This procedure of partial wrist fusion allows for limited wrist movement, whereas total wrist fusion immobilizes the wrist permanently. Following surgery it can take several months for affected patients to regain strength.
Unfortunately both of these operations are salvage procedures and movements in the wrist will be significantly reduced.
Diagnosis is not very advanced and is based on the telltale nodding seizures of the victims. When stunted growth and mental disability are also present, probability of nodding syndrome is high. In the future, neurological scans may also be used in diagnosis. As there is no known cure for the disease, treatment has been directed at symptoms, and has included the use of anticonvulsants such as sodium valproate and phenobarbitol. Anti-malaria drugs have also been administered, to unknown effect.
There are some preliminary studies that seem to indicate that treatment with hydrogen sulfide (HS) can have a protective effect against reperfusion injury.
Chloramphenicol therapy should be stopped immediately. Exchange transfusion may be required to remove the drug. Sometimes, phenobarbital (UGT induction) is used.
If the above treatment is not possible venlafaxine is recommended. Evidence for benefit is not as good.
Previous treatments include tricyclic antidepressants such as imipramine, clomipramine or protriptyline. Monoamine oxidase inhibitors may be used to manage both cataplexy and the REM sleep-onset symptoms of sleep paralysis and hypnagogic hallucinations.
Sodium oxybate and gamma-hydroxybutyrate has been found to be effective at reducing the number of cataplexy episodes. Sodium oxybate is generally safe. Sodium oxybate is typically the recommended treatment.
The condition can be prevented by using chloramphenicol at the recommended doses and monitoring blood levels, or alternatively, third generation cephalosporins can be effectively substituted for the drug, without the associated toxicity.
A study of aortic cross-clamping, a common procedure in cardiac surgery, demonstrated a strong potential benefit with further research ongoing.
To properly treat a patient with tracheobronchomalacia, the subtype must be determined (primary or secondary). After the type is named, the cause must be identified, whether it is from genetics, a trauma accident, or chronic tracheal illness. If a trauma case or chronic tracheal illnesses were the cause, the first steps of treatment would be to fix or help these underlying issues. If the cause is genetic or the previous underlying issues could not be fixed, other treatments would be assessed. More severe treatments include silicone stenting to prevent tracheal constriction, surgery to strengthen or attempt to rebuild the walls, continuous positive airway pressure that has a machine blow small amounts of air into the trachea to keep it open (mainly at night), or a tracheostomy, which is surgically put into your neck that leads to your trachea to help with breathing. People with tracheobronchomalacia who do not experience symptoms do not need treatment and are often undiagnosed.
Children younger than 6 have the best prognosis, since they have time for the dead bone to revascularize and remodel, with a good chance that the femoral head will recover and remain spherical after resolution of the disease. Children who have been diagnosed with Perthes' disease after the age of 10 are at a very high risk of developing osteoarthritis and coxa magna. When an LCP disease diagnosis occurs after age 8, a better outcome results with surgery rather than nonoperative treatments. Shape of femoral head at the time when Legg-Calve Perthes disease heals is the most important determinant of risk for degenerative arthritis; hence, the shape of femoral head and congruence of hip are most useful outcome measures.
Often, degenerative disc disease can be successfully treated without surgery. One or a combination of treatments such as physical therapy, anti-inflammatory medications such as nonsteroidal anti-inflammatory drugs, traction, or epidural steroid injection often provide adequate relief of troubling symptoms.
Surgery may be recommended if the conservative treatment options do not provide relief within two to three months. If leg or back pain limits normal activity, if there is weakness or numbness in the legs, if it is difficult to walk or stand, or if medication or physical therapy are ineffective, surgery may be necessary, most often spinal fusion. There are many surgical options for the treatment of degenerative disc disease, including anterior and posterior approaches. The most common surgical treatments include:
New treatments are emerging that are still in the beginning clinical trial phases. Glucosamine injections may offer pain relief for some without precluding the use of more aggressive treatment options . In the US, artificial disc replacement is viewed cautiously as a possible alternative to fusion in carefully selected patients, yet it is widely used in a broader range of cases in Europe, where multi-level disc replacement of the cervical and lumbar spine is common . Adult stem cell therapies for disc regeneration are in their infancy. Investigation into mesenchymal stem cell therapy knife-less fusion of vertebrae in the United States began in 2006.
Evidence is insufficient to support the use of medications to treat obstructive sleep apnea. This includes the use of fluoxetine, paroxetine, acetazolamide and tryptophan among others.
The exact cause of Kienböck's is not known, though there are thought to be a number of factors predisposing a person to Kienböck's.
Recent studies have made a correlation between Kienböck's sufferers and Western European ancestry, but no definitive link can be positively confirmed.
The necrosis of the lunate bone can frequently be traced to a trauma to the wrist, like a compound fracture, which could cause the lunate's blood supply to be interrupted. Blood flows to the lunate through several arteries, each supplying a percentage. When one of these pathways is severed, the likelihood the patient will develop necrosis increases.
Despite a preponderance of evidence, no particular cause has been conclusively verified.
Data exists on the internet that most people suffering from Kienböck's are affected in their dominant hand, though about one-third of sufferers report the condition in their non-dominant hand. In very few cases have there been people that have acquired it in both wrists.
Kienböck's disease is classified as a "rare disorder," meaning that it affects fewer than 200,000 people in the U.S. population.
Many Kienböck's patients are frustrated by the lack of consensus among hand surgeons about optimal treatments for Kienböck's. No matter what the disease's stage of progression, there is no one best treatment, and the decision is often based partially, or even mostly, on incidental factors such as the patient's pain tolerance, the patient's desire to return to active use of the hand (such as in manual occupations), and the surgeon's level of expertise with different treatments.
Though, since each case of Kienböck's is different, the makeup of the wrist and arm bones are important factors which are individualized to each patient. Therefore, one surgery will never be able to solve all the problems associated with the disease. Thus, no consensus can be reached among surgeons.
The key for managing Sack–Barabas syndrome is for the patient to be aware of their disease. Close follow up and planning of interventions can significantly prolong and maintain the quality of life of a patient with this disease.
Pregnant affected women must take special care due to the increased risk of premature death due to rupture of arteries, bowel or uterine rupture with a reported mortality rate of 50%.
Genetic counselling is recommended for prospective parents with a family history of Ehlers–Danlos syndrome. Affected parents should be aware of the type of Ehlers-Danlos syndrome they have and its mode of inheritance.