Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Thoroughly cleaning boats, trailers, nets and other equipment when traveling between different lakes and streams also
helps. The only EPA-approved disinfectant proven effective against VHS is Virkon AQUATIC (made by Dupont). Chlorine bleach kills the VHS virus, but in concentrations that are much too caustic for ordinary use. Disinfecting stations can be found at various inland lake boat launches in the Great Lakes region.
Currently, antibiotic drugs such as penicillin or tetracycline are the only effective methods for disease treatment. Within wild populations, disease control consists of reducing the amount of bacterial spores present in the environment. This can be done by removing contaminated carcasses and scat.
Prevention is through use of Stock coryza-free birds. In other areas culling of the whole flock is a good means of the disease control. Bacterin also is used at a dose of two to reduce brutality of the disease. Precise exposure has also has been used but it should be done with care. Vaccination of the chicks is done in areas with high disease occurrence. Treatment is done by using antibiotics such as erythromycin, Dihydrostreptomycin, Streptomycin sulphonamides, tylosin and Flouroquinolones .
In laboratory animals, prevention includes a low-stress environment, an adequate amount of nutritional feed, and appropriate sanitation measurements. Because animals likely ingest bacterial spores from contaminated bedding and feed, regular cleaning is a helpful method of prevention. No prevention methods are currently available for wild animal populations.
There is no vaccine for SVD. Prevention measures are similar to those for foot-and-mouth disease: controlling animals imported from infected areas, and sanitary disposal of garbage from international aircraft and ships, and thorough cooking of garbage. Infected animals should be placed in strict quarantine. Eradication measures for the disease include quarantining infected areas, depopulation and disposal of infected and contact pigs, and cleaning and disinfecting
contaminated premises.
Infections are treated with antibiotics, particularly doxycycline, and the acute symptoms appear to respond to these drugs.
When meningococcal disease is suspected, treatment must be started "immediately" and should not be delayed while waiting for investigations. Treatment in primary care usually involves prompt intramuscular administration of benzylpenicillin, and then an urgent transfer to hospital (hopefully, an academic level I medical center, or at least a hospital with round the clock neurological care, ideally with neurological intensive and critical care units) for further care. Once in the hospital, the antibiotics of choice are usually IV broad spectrum 3rd generation cephalosporins, e.g., cefotaxime or ceftriaxone. Benzylpenicillin and chloramphenicol are also effective. Supportive measures include IV fluids, oxygen, inotropic support, e.g., dopamine or dobutamine and management of raised intracranial pressure. Steroid therapy may help in some adult patients, but is unlikely to affect long term outcomes.
Complications following meningococcal disease can be divided into early and late groups. Early complications include: raised intracranial pressure, disseminated intravascular coagulation, seizures, circulatory collapse and organ failure. Later complications are: deafness, blindness, lasting neurological deficits, reduced IQ, and gangrene leading to amputations.
Vaccination is the only known method to prevent the development of tumors when chickens are infected with the virus. However, administration of vaccines does not prevent transmission of the virus, i.e., the vaccine is not sterilizing. However, it does reduce the amount of virus shed in the dander, hence reduces horizontal spread of the disease. Marek's disease does not spread vertically. The vaccine was introduced in 1970 and the scientist credited with its development is Dr. Ben Roy Burmester and Dr. Frank J Siccardi. Before that, Marek's disease caused substantial revenue loss in the poultry industries of the United States and the United Kingdom. The vaccine can be administered to one-day-old chicks through subcutaneous inoculation or by "in ovo" vaccination when the eggs are transferred from the incubator to the hatcher. "In ovo" vaccination is the preferred method, as it does not require handling of the chicks and can be done rapidly by automated methods. Immunity develops within two weeks.
The vaccine originally contained the antigenically similar turkey herpesvirus, which is serotype 3 of MDV. However, because vaccination does not prevent infection with the virus, the Marek's disease virus has evolved increased virulence and resistance to this vaccine. As a result, current vaccines use a combination of vaccines consisting of HVT and gallid herpesvirus type 3 or an attenuated MDV strain, CVI988-Rispens (ATCvet code: ).
No serious long-term effects are known for this disease, but preliminary evidence suggests, if such symptoms do occur, they are less severe than those associated with Lyme disease.
Living fish afflicted with VHS may appear listless or limp, hang just
beneath the surface, or swim very abnormally, such as constant flashing
circling due to the tropism of the virus for the brain.
External signs may include darker coloration, exophthalmia ("pop eye"),
pale or red-dotted gills, sunken eyes, and bleeding around orbits (eye sockets) and
at base of fins.
Genetics researchers at the Lake Erie Research Center at the University of Toledo are developing a test that will speed diagnosis from a month to a matter of hours.
The first approach, which is the best approach at an effective management practice would be to eradicate or severely damage the Mountain and Cherry Leafhopper population because the leafhoppers are the number one vectors for this pathogen. To do this, pesticides (i.e. acephate, bifenthrin, cyfluthrin) could be applied or biological control (predators of the leafhopper) could be used. There should be a pre-season application of control measures as well as a post-season application. This is to maximize the effort at controlling both types of leafhoppers (Cherry and Mountain), thus cutting down the starting inoculum at both stages in the life cycle.
There are numerous steps one has to take to try to manage the disease as best as possible. The aim is at prevention because once the pathogen reaches the cherry trees, disease will surely ensue and there is no cure or remedy to prevent the loss of fruit production as well as the ultimate death of the tree.
Swine vesicular disease (SVD) is an acute, contagious viral disease of swine caused by the swine vesicular disease virus, an enterovirus. It is characterized by fever and vesicles with subsequent ulcers in the mouth and on the snout, feet, and teats. The pathogen is relatively resistant to heat, and can persist for a long time in salted, dried, and smoked meat products. Swine vesicular disease does not cause economically-important disease, but is important due to its similarity to foot-and-mouth disease.
Protective levels of anticapsular antibodies are not achieved until 7–14 days following administration of a meningococcal vaccine, vaccination cannot prevent early onset disease in these contacts and usually is not recommended following sporadic cases of invasive meningococcal disease. Unlike developed countries, in sub-Saharan Africa and other under developed countries, entire families live in a single room of a house.
Meningococcal infection is usually introduced into a household by an asymptomatic person. Carriage then spreads through the household, reaching infants usually after one or more other household members have been infected. Disease is most likely to occur in infants and young children who lack immunity to the strain of organism circulating and who subsequently acquire carriage of an invasive strain.
By preventing susceptible contacts from acquiring infection by directly inhibiting colonization. Close contacts are defined as those persons who could have had intimate contact with the patient’s oral secretions such as through kissing or sharing of food or drink. The importance of the carrier state in meningococcal disease is well known. In developed countries the disease transmission usually occurs in day care, schools and large gatherings where usually disease transmission could occur. Because the meningococcal organism is transmitted by respiratory droplets and is susceptible to drying, it has been postulated that close contact is necessary for transmission. Therefore, the disease transmission to other susceptible person cannot be prevented. Meningitis occurs sporadically throughout the year, and since the organism has no known reservoir outside of man, asymptomatic carriers are usually the source of transmission.
Additionally, basic hygiene measures, such as handwashing and not sharing drinking cups, can reduce the incidence of infection by limiting exposure. When a case is confirmed, all close contacts with the infected person can be offered antibiotics to reduce the likelihood of the infection spreading to other people. However, rifampin-resistant strains have been reported and the indiscriminate use of antibiotics contributes to this problem. Chemoprophylaxis is commonly used to those close contacts who are at highest risk of carrying the pathogenic strains. Since vaccine duration is unknown, mass select vaccinations may be the most cost-effective means for controlling the transmission of the meningococcal disease, rather than mass routine vaccination schedules.
Infectious coryza is a serious bacterial disease of chickens which affects respiratory system and it is manifested by inflammation of the area below the eye, nasal discharge and sneezing...The disease is found all over the world causing high economic losses. Economic loss is due to stumping off and reduction of egg production in case of laying chickens. The disease was discovered early 1930s by considering clinical signs
This is a terminal condition and there is currently no specific treatment for the disease.
Treatment is with penicillin, ampicillin, tetracycline, or co-trimoxazole for one to two years. Any treatment lasting less than a year has an approximate relapse rate of 40%. Recent expert opinion is that Whipple's disease should be treated with doxycycline with hydroxychloroquine for 12 to 18 months. Sulfonamides (sulfadiazine or sulfamethoxazole) may be added for treatment of neurological symptoms.
Pacheco's disease is an acute and often lethal infectious disease in psittacine birds. The disease is caused by a group of herpesviruses, "Psittacid herpesvirus 1" (PsHV-1), which consists of four genotypes. Birds which do not succumb to Pacheco's disease after infection with the virus become asymptomatic carriers that act as reservoirs of the infection. These persistently infected birds, often Macaws, Amazon parrots and some species of conures, shed the virus in feces and in respiratory and oral secretions. Outbreaks can occur when stress causes healthy birds who carry the virus to shed it. Birds generally become infected after ingesting the virus in contaminated material, and show signs of the disease within several weeks.
The main sign of Pacheco's disease is sudden death, sometimes preceded by a short, severe illness. If a bird survives Pacheco's disease following infection with PsHV-1 genotypes 1, 2 or 3, it may later develop internal papilloma disease in the gastrointestinal tract.
Susceptible parrot species include the African gray parrot, and cockatoo. Native Australian birds, such as the eclectus parrot, Bourke's parrot, and budgerigar are susceptible to Pacheco's disease, although the disease itself has not been found in Australia.
Marek's disease is a highly contagious viral neoplastic disease in chickens. It is named after József Marek, a Hungarian veterinarian. Marek's disease is caused by an alphaherpesvirus known as 'Marek's disease virus' (MDV) or "Gallid alphaherpesvirus 2" (GaHV-2). The disease is characterized by the presence of T cell lymphoma as well as infiltration of nerves and organs by lymphocytes. Viruses "related" to MDV appear to be benign and can be used as vaccine strains to prevent Marek's disease. For example, the related Herpesvirus of Turkeys (HVT), causes no apparent disease in turkeys and continues to be used as a vaccine strain for prevention of Marek's disease (see below). Birds infected with GaHV-2 can be carriers and shedders of the virus for life. Newborn chicks are protected by maternal antibodies for a few weeks. After infection, microscopic lesions are present after one to two weeks, and gross lesions are present after three to four weeks. The virus is spread in dander from feather follicles and transmitted by inhalation.
Surgical options are considered the final option for treating Kyrle disease. The use of a carbon dioxide laser, electrocautery, or cryosurgery to rid of limited lesions can be implemented. Patients with darker skin must take extra precaution as these options can lead to dyspigmentation. In addition, performing on patients that had Kyrle disease due to diabetes mellitus or have poor circulation can lead to poor healing.
Pacheco's disease is an eponymously named disease; it is named after the Brazilian veterinarian, Genesio Pacheco, who first came across the disease in 1929, in an outbreak affecting the turquoise-fronted amazon parrot, "Amazona aestiva". Initially, Pacheco's disease was thought to be a manifestation of avian psittacosis. The causative agent of the disease, a herpesvirus, was not identified until 1975.
UV irradiation can be utilized after curetting the hyperkeratosis with a combination medication treatment of oral retinoids, psoralen and Ultraviolet A radiation.
Splenectomy is usually ineffective for the treatment of cold agglutinin disease, because the liver is the predominant site of sequestration. However, if the patient has splenomegaly, then the disease may respond to splenectomy. More importantly, a lymphoma localized to the spleen may only be found after splenectomy.
Patients with cold agglutinin disease should include good sources of folic acid, such as fresh fruits and vegetables, in their diet. Activities for these individuals should be less strenuous than those for healthy people, particularly for patients with anemia. Jogging in the cold could be very hazardous because of the added windchill factor.
Pogosta disease is a viral disease, established to be identical with other diseases, Karelian fever and Ockelbo disease. The names are derived from the words Pogosta, Karelia and Ockelbo, respectively.
The symptoms of the disease include usually rash, as well as mild fever and other flu-like symptoms; in most cases the symptoms last less than 5 days. However, in some cases, the patients develop a painful arthritis. There are no known chemical agents available to treat the disease.
It has long been suspected that the disease is caused by a Sindbis-like virus, a positive-stranded RNA virus belonging to the Alphavirus genus and family Togaviridae. In 2002 a strain of Sindbis was isolated from patients during an outbreak of the Pogosta disease in Finland, confirming the hypothesis.
This disease is mainly found in the Eastern parts of Finland; a typical Pogosta disease patient is a middle-aged person who has been infected through a mosquito bite while picking berries in the autumn. The prevalence of the disease is about 100 diagnosed cases every year, with larger outbreaks occurring in 7-year intervals.