Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Viral meningitis typically only requires supportive therapy; most viruses responsible for causing meningitis are not amenable to specific treatment. Viral meningitis tends to run a more benign course than bacterial meningitis. Herpes simplex virus and varicella zoster virus may respond to treatment with antiviral drugs such as aciclovir, but there are no clinical trials that have specifically addressed whether this treatment is effective. Mild cases of viral meningitis can be treated at home with conservative measures such as fluid, bedrest, and analgesics.
Treatment is generally supportive. Rest, hydration, antipyretics, and pain or anti-inflammatory medications may be given as needed.
Herpes simplex virus, varicella zoster virus and cytomegalovirus have a specific antiviral therapy. For herpes the treatment of choice is aciclovir.
Surgical management is indicated where there is extremely increased intracranial pressure, infection of an adjacent bony structure (e.g. mastoiditis), skull fracture, or abscess formation.
The majority of people that have viral meningitis get better within 7-10 days.
Additional treatment with corticosteroids (usually dexamethasone) has shown some benefits, such as a reduction of hearing loss, and better short term neurological outcomes in adolescents and adults from high-income countries with low rates of HIV. Some research has found reduced rates of death while other research has not. They also appear to be beneficial in those with tuberculosis meningitis, at least in those who are HIV negative.
Professional guidelines therefore recommend the commencement of dexamethasone or a similar corticosteroid just before the first dose of antibiotics is given, and continued for four days. Given that most of the benefit of the treatment is confined to those with pneumococcal meningitis, some guidelines suggest that dexamethasone be discontinued if another cause for meningitis is identified. The likely mechanism is suppression of overactive inflammation.
Additional treatment with corticosteroids have a different role in children than in adults. Though the benefit of corticosteroids has been demonstrated in adults as well as in children from high-income countries, their use in children from low-income countries is not supported by the evidence; the reason for this discrepancy is not clear. Even in high-income countries, the benefit of corticosteroids is only seen when they are given prior to the first dose of antibiotics, and is greatest in cases of "H. influenzae" meningitis, the incidence of which has decreased dramatically since the introduction of the Hib vaccine. Thus, corticosteroids are recommended in the treatment of pediatric meningitis if the cause is "H. influenzae", and only if given prior to the first dose of antibiotics; other uses are controversial.
Treatment (which is based on supportive care) is as follows:
Pyrimethamine-based maintenance therapy is often used to treat Toxoplasmic Encephalitis (TE), which is caused by Toxoplasma gondii and can be life-threatening for people with weak immune systems. The use of highly active antiretroviral therapy (HAART), in conjunction with the established pyrimethamine-based maintenance therapy, decreases the chance of relapse in patients with HIV and TE from approximately 18% to 11%. This is a significant difference as relapse may impact the severity and prognosis of disease and result in an increase in healthcare expenditure.
Acyclovir is the treatment of choice for Mollaret's meningitis. Some patients see a drastic difference in how often they get sick and others don't. Often treatment means managing symptoms, such as pain management and strengthening the immune system.
The IHMF recommends that patients with benign recurrent lymphocytic meningitis receive intravenous acyclovir in the amount of 10 mg/kg every 8 hours, for 14–21 days. More recently, the second-generation antiherpetic drugs valacyclovir and famciclovir have been used to successfully treat patients with Mollaret's. Additionally, it has been reported that Indomethacin administered in the amount of 25 mg 3 times per day after meals, or 50 mg every 4 hours, has resulted in a faster recovery for patients, as well as more extended symptom-free intervals, between episodes.
Development of new therapies has been hindered by the lack of appropriate animal model systems for some important viruses and also because of the difficulty in conducting human clinical trials for diseases that are rare. Nonetheless, numerous innovative approaches to antiviral therapy are available including candidate thiazolide and purazinecarboxamide derivatives with potential broad-spectrum antiviral efficacy. New herpes virus drugs include viral helicase-primase and terminase inhibitors. A promising new area of research involves therapies based on enhanced understanding of host antiviral immune responses.
Recurring Mollaret meningitis attacks will occur through the patient lifespan so long as the HSV virus is not managed. Patients have reported symptoms for as long as 30 years from first episode. Diet and stress management are key to keeping the HSV virus at bay.
Antiviral therapy: as early as possible
10~15mg/kg every 8 hours for 14~21d
5~10mg/kg every 12hours for 14~21d
immune therapy: interferon
symptomatic therapy
High fever: physical regulation of body temperature
Seizure: antiepileptic drugs
high intracranial pressure-20%mannitol
Infections: antibiotic drugs
Treatments of proven efficacy are currently limited mostly to herpes viruses and human immunodeficiency virus. The herpes virus is of two types: herpes type 1 (HSV-1, or oral herpes) and herpes type 2 (HSV-2, or genital herpes). Although there is no particular cure; there are treatments that can relieve the symptoms. Drugs like Famvir, Zovirax, and Valtrex are among the drugs used, but these medications can only decrease pain and shorten the healing time. They can also decrease the total number of outbreaks in the surrounding. Warm baths also may relive the pain of genital herpes.
Human Immunodeficiency Virus Infection (HIV) is treated by using a combination of medications to fight against the HIV infection in the body. This is called antiretroviral therapy (ART). ART is not a cure, but it can control the virus so that a person can live a longer, healthier life and reduce the risk of transmitting HIV to others around him. ART involves taking a combination of HIV medicines (called an HIV regimen) every day, exactly as prescribed by the doctor. These HIV medicines prevent HIV Virus from multiplying (making copies of itself in the body), which reduces the amount of HIV in the body. Having less HIV in the body gives the immune system a chance to recover and fight off infections and cancers. Even though there is still some HIV in the body, the immune system is strong enough to fight off infections and cancers. By reducing the amount of HIV in the body, HIV medicines also reduce the risk of transmitting the virus to others. ART is recommended for all people with HIV, regardless of how long they’ve had the virus or how healthy they are. If left untreated, HIV will attack the immune system and eventually progress to AIDS.
Treatment is symptomatic and supportive. Children with hydrocephalus often need a ventriculoperitoneal shunt. Nucleoside analog ribavirin is used in some cases due to the inhibitory effect the agent has "in vitro" on arenaviruses. However, there is not sufficient evidence for efficacy in humans to support routine use. The only survivor of a transplant-associated LCMV infection was treated with ribavirin and simultaneous tapering of the immunosuppressive medications. Early and intravenous ribavirin treatment is required for maximal efficacy, and it can produce considerable side effects. Ribavirin has not been evaluated yet in controlled clinical trials.
Use of ribavirin during pregnancy is generally not recommended, as some studies indicate the possibility of teratogenic effects. If aseptic meningitis, encephalitis, or meningoencephalitis develops in consequence to LCMV, hospitalization and supportive treatment may be required. In some circumstances, anti-inflammatory drugs may also be considered. In general, mortality is less than one percent.
Vaccination is available against tick-borne and Japanese encephalitis and should be considered for at-risk individuals. Post-infectious encephalomyelitis complicating smallpox vaccination is avoidable, for all intents and purposes, as smallpox is nearly eradicated. Contraindication to Pertussis immunization should be observed in patients with encephalitis.
Treatment for meningitis is antibiotics. The particular drugs used are based off the infecting bacteria, but a mix of ampicillin, gentamicin, and cefotaxime is used for early-onset meningitis before identification of infection. A regimen of antistaphylococcal antibiotic, such as nafcillin or vancomycin, plus cefotaxime or ceftazidime with or without an aminoglycoside is recommended for late-onset neonatal meningitis. The aim for these treatments is to sterilize the CSF of any meningitis-causing pathogens. A repeated LP 24–48 hours after initial treatment should be used to declare sterilization.
In cases of herpes simplex virus-derived meningitis, antiviral therapy (acyclovir or vidarabine) must be started immediately for a favorable outcome. Acyclovir is a better antiviral because it shows a similar effect on the infection as vidarabine and is safer to use in the neonate. The recommended dosage is 20 mg/kg every six hours for 21 days.
The disease is incurable once manifested, so there is no specific drug therapy for TBE. Symptomatic brain damage requires hospitalization and supportive care based on syndrome severity. Anti-inflammatory drugs, such as corticosteroids, may be considered under specific circumstances for symptomatic relief. Tracheal intubation and respiratory support may be necessary.
Prevention includes non-specific (tick-bite prevention, tick checks) and specific prophylaxis in the form of a vaccine. TBE immunoglobulin is no longer used. Tick-borne encephalitis vaccine is very effective and available in many disease endemic areas and in travel clinics.
The treatment of TB meningitis is isoniazid, rifampicin, pyrazinamide and ethambutol for two months, followed by isoniazid and rifampicin alone for a further ten months. Steroids help reduce the risk of death in those without HIV. Steroids can be used in the first six weeks of treatment, A few people may require immunomodulatory agents such as thalidomide. Hydrocephalus occurs as a complication in about a third of people with TB meningitis. The addition of aspirin may reduce or delay mortality, possibly by reducing complications such as infarcts.
Most people recover from West Nile virus without treatment. No specific treatment is available for WNV infection. In mild cases over the counter pain relievers can help ease mild headaches and muscle aches in adults. In severe cases treatment consists of supportive care that often involves hospitalization, intravenous fluids, pain medication, respiratory support, and prevention of secondary infections.
Medications are usually not needed as hand, foot, and mouth disease is a viral disease that typically resolves on its own. Currently, there is no specific curative treatment for hand, foot and mouth disease. Disease management typically focuses on achieving symptomatic relief. Pain from the sores may be eased with the use of analgesic medications. Infection in older children, adolescents, and adults is typically mild and lasts approximately 1 week, but may occasionally run a longer course. Fever reducers and lukewarm baths can help decrease body temperature.
A minority of individuals with hand, foot and mouth disease may require hospital admission due to complications such as inflammation of the brain, inflammation of the meninges, or acute flaccid paralysis. Non-neurologic complications such as inflammation of the heart, fluid in the lungs, or bleeding into the lungs may also occur.
Fungal meningitis is treated with long courses of high dose antifungal medications. The duration of treatment is dependent upon the causal pathogen and the patient's ability to stave off the infection; for patients with a weaker immune system or diabetes, treatment will often take longer.
When meningococcal disease is suspected, treatment must be started "immediately" and should not be delayed while waiting for investigations. Treatment in primary care usually involves prompt intramuscular administration of benzylpenicillin, and then an urgent transfer to hospital (hopefully, an academic level I medical center, or at least a hospital with round the clock neurological care, ideally with neurological intensive and critical care units) for further care. Once in the hospital, the antibiotics of choice are usually IV broad spectrum 3rd generation cephalosporins, e.g., cefotaxime or ceftriaxone. Benzylpenicillin and chloramphenicol are also effective. Supportive measures include IV fluids, oxygen, inotropic support, e.g., dopamine or dobutamine and management of raised intracranial pressure. Steroid therapy may help in some adult patients, but is unlikely to affect long term outcomes.
Complications following meningococcal disease can be divided into early and late groups. Early complications include: raised intracranial pressure, disseminated intravascular coagulation, seizures, circulatory collapse and organ failure. Later complications are: deafness, blindness, lasting neurological deficits, reduced IQ, and gangrene leading to amputations.
Because it is a bacterial disease, the primary method of treatment for "Haemophilus" meningitis is anti-bacterial therapy. Common antibiotics include ceftriaxone or cefotaxime, both of which can combat the infection and thus reduce inflammation in the meninges, or the membranes that protect the brain and spinal cord. Anti-inflammatories such as corticosteroids, or steroids produced by the body to reduce inflammation, can also be used to fight the meningeal inflammation in an attempt to reduce risk of mortality and reduce the possibility of brain damage.
The treatment of mumps is supportive. Symptoms may be relieved by the application of intermittent ice or heat to the affected neck/testicular area and by acetaminophen for pain relief. Warm saltwater gargles, soft foods, and extra fluids may also help relieve symptoms. Acetylsalicylic acid (aspirin) is not used to treat children due to the risk of Reye's syndrome.
There is no effective post-exposure recommendation to prevent secondary transmission, nor is the post-exposure use of vaccine or immunoglobulin effective.
Mumps is considered most contagious in the five days after the onset of symptoms, and isolation is recommended during this period. In someone who has been admitted to the hospital, standard and droplet precautions are needed. People who work in healthcare cannot work for five days.
The disease is associated with high rates of mortality and severe morbidity.
Immunosuppressive therapy has been effective in halting the disease for laboratory animals.
Viral meningitis, also known as aseptic meningitis, is a type of meningitis due to a viral infection. It results in inflammation of the meninges (the membranes covering the brain and spinal cord). Symptoms commonly include headache, fever, sensitivity to light, and neck stiffness.
Viruses are the most common cause of aseptic meningitis. Most cases of viral meningitis are caused by enteroviruses (common stomach viruses). However, other viruses can also cause viral meningitis. For instance, West Nile virus, mumps, measles, herpes simplex types I and II, varicella, and lymphocytic choriomeningitis (LCM) virus. Based on clinical symptoms, viral meningitis cannot be reliably differentiated from bacterial meningitis, although viral meningitis typically follows a more benign clinical course. Viral meningitis has no evidence of bacteria present in cerebral spinal fluid (CSF). Therefore, lumbar puncture with CSF analysis is often needed to identify the disease.
In most causes there is no specific treatment, with efforts generally aimed at relieving symptoms (headache, fever, or nausea). A few viral causes, such as HSV, have specific treatments.
In the United States viral meningitis is the cause of greater than half of all cases of meningitis. From 1988–1999, about 36,000 cases occurred a year. While the disease can occur in both children and adults it is more common in children.
The most common preventative measure against mumps is a vaccination with a mumps vaccine, invented by American microbiologist Maurice Hilleman at Merck. The vaccine may be given separately or as part of the MMR immunization vaccine that also protects against measles and rubella. In the US, MMR is now being supplanted by MMRV, which adds protection against chickenpox (varicella, HHV3). The WHO (World Health Organization) recommends the use of mumps vaccines in all countries with well-functioning childhood vaccination programmes. In the United Kingdom it is routinely given to children at age 13 months with a booster at 3–5 years (preschool) This confers lifelong immunity. The American Academy of Pediatrics recommends the routine administration of MMR vaccine at ages 12–15 months and at 4–6 years. In some locations, the vaccine is given again between four and six years of age, or between 11 and 12 years of age if not previously given. The efficacy of the vaccine depends on the strain of the vaccine, but is usually around 80 percent. The Jeryl Lynn strain is most commonly used in developed countries but has been shown to have reduced efficacy in epidemic situations. The Leningrad-Zagreb strain commonly used in developing countries appears to have superior efficacy in epidemic situations.
Because of the outbreaks within college and university settings, many governments have established vaccination programs to prevent large-scale outbreaks. In Canada, provincial governments and the Public Health Agency of Canada have all participated in awareness campaigns to encourage students ranging from grade one to college and university to get vaccinated.
Some anti-vaccine activists protest against the administration of a vaccine against mumps, claiming that the attenuated vaccine strain is harmful, and/or that the wild disease is beneficial. There is no evidence whatsoever to support the claim that the wild disease is beneficial, or that the MMR vaccine is harmful. Claims have been made that the MMR vaccine is linked to autism and inflammatory bowel disease, including one study by Andrew Wakefield. The paper was discredited and retracted in 2010 and Wakefield was later stripped of his license after his work was found to be an "elaborate fraud". Also, subsequent studies indicate no link between vaccination with the MMR and autism. Since the dangers of the disease are well known, and the dangers of the vaccine are quite minimal, most doctors recommend vaccination.
The WHO, the American Academy of Pediatrics, the Advisory Committee on Immunization Practices of the Centers for Disease Control and Prevention, the American Academy of Family Physicians, the British Medical Association and the Royal Pharmaceutical Society of Great Britain currently recommend routine vaccination of children against mumps. The British Medical Association and Royal Pharmaceutical Society of Great Britain had previously recommended against general mumps vaccination, changing that recommendation in 1987.
Before the introduction of the mumps vaccine, the mumps virus was the leading cause of viral meningoencephalitis in the United States. However, encephalitis occurs rarely (less than two per 100,000). In one of the largest studies in the literature, the most common symptoms of mumps meningoencephalitis were found to be fever (97 percent), vomiting (94 percent) and headache (88.8 percent). The mumps vaccine was introduced into the United States in December 1967: since its introduction there has been a steady decrease in the incidence of mumps and mumps virus infection. There were 151,209 cases of mumps reported in 1968. From 2001 to 2008, the case average was only 265 per year, excluding an outbreak of less than 6000 cases in 2006 attributed largely to university contagion in young adults.