Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Uterine fibroids can be treated with the same methods like sporadic uterine fibroids including antihormonal treatment, surgery or embolisation. Substantially elevated risk of progression to or independent development of uterine leiomyosarcoma has been reported which may influence treatment methods.
The predisposition to renal cell cancer calls for screening and, if necessary, urological management.
The skin lesions may be difficult to treat as they tend to recur after excision or destructive treatment. Drugs which affect smooth muscle contraction, such as doxazosin, nitroglycerine, nifedipine and phenoxybenzamine, may provide pain relief.
Topical lidocaine patches have been reported to decrease in severity and frequency of pain cutaneous leiomyomas.
Early intervention is considered important. For infants, breathing and feeding difficulties, are monitored. Therapies used are "symptomatic and supportive."
Autoimmune polyendocrine syndrome type 1 treatment is based on the symptoms that are presented by the affected individual, additionally there is:
- Hormone replacement
- Systemic antifungal treatment
- Immunosuppressive treatment
The goal of treatment is to improve the appearance of lesions since they are otherwise not serious and typically do not cause symptoms. Many treatment methods have been attempted however, complete removal is uncommon. No single treatment method has been shown to consistently work. Both medical and surgical treatments have been studied, each with variable success. Common destructive treatment methods include carbon dioxide lasers, dermabrasion, surgical excision, electrocoagulation and chemical peels. Many of these methods are very time consuming and require multiple treatment sessions.Carbon dioxide lasers are the most commonly practiced method; however, can cause thermal damage leading to scarring in the area. Medical therapies include topical atropine, topical retinoids and oral tranilast.
The most common adverse side effects include redness, skin discoloration and pain. Other side effects include blistering and scarring.
Because newborns can breathe only through their nose, the main goal of postnatal treatment is to establish a proper airway. Primary surgical treatment of FND can already be performed at the age of 6 months, but most surgeons wait for the children to reach the age of 6 to 8 years. This decision is made because then the neurocranium and orbits have developed to 90% of their eventual form. Furthermore, the dental placement in the jaw has been finalized around this age.
There is no treatment for the disorder. A number of studies are looking at gene therapy, exon skipping and CRISPR interference to offer hope for the future. Accurate determination through confirmed diagnosis of the genetic mutation that has occurred also offers potential approaches beyond gene replacement for a specific group, namely in the case of diagnosis of a so-called nonsense mutation, a mutation where a stop codon is produced by the changing of a single base in the DNA sequence. This results in premature termination of protein biosynthesis, resulting in a shortened and either functionless or function-impaired protein. In what is sometimes called "read-through therapy", translational skipping of the stop codon, resulting in a functional protein, can be induced by the introduction of specific substances. However, this approach is only conceivable in the case of narrowly circumscribed mutations, which cause differing diseases.
Prosthetic replacement of missing teeth is possible using dental implant technology or dentures. This treatment can be successful in giving patients with anodontia a more aesthetically pleasing appearance. The use of an implant prosthesis in the lower jaw could be recommended for younger patients as it is shown to significantly improve the craniofacial growth, social development and self-image. The study associated with this evidence worked with individuals who had ectodermal dysplasia of varying age groups of up to 11, 11 to 18 and more than 18 years. It was noted that the risk of implant failure was significantly higher in patients younger than 18 years, but there is significant reason to use this methodology of treatment in those older. Overall the use of an implant-prosthesis has a considerable functional, aesthetic and psychological advantage when compared to a conventional denture, in the patients.
Structural nasal deformities are corrected during or shortly after the facial bipartition surgery. In this procedure, bone grafts are used to reconstruct the nasal bridge. However, a second procedure is often needed after the development of the nose has been finalized (at the age of 14 years or even later).
Secondary rhinoplasty is based mainly on a nasal augmentation, since it has been proven better to add tissue to the nose than to remove tissue. This is caused by the minimal capacity of contraction of the nasal skin after surgery.
In rhinoplasty, the use of autografts (tissue from the same person as the surgery is performed on) is preferred. However, this is often made impossible by the relative damage done by previous surgery. In those cases, bone tissue from the skull or the ribs is used. However, this may give rise to serious complications such as fractures, resorption of the bone, or a flattened nasofacial angle.
To prevent these complications, an implant made out of alloplastic material could be considered. Implants take less surgery time, are limitlessly available and may have more favorable characteristics than autografts. However, possible risks are rejection, infection, migration of the implant, or unpredictable changes in the physical appearance in the long term.
At the age of skeletal maturity, orthognathic surgery may be needed because of the often hypoplastic maxilla. Skeletal maturity is usually reached around the age of 13 to 16. Orthognathic surgery engages in diagnosing and treating disorders of the face and teeth- and jaw position.
When surgery is indicated, the choice of treatment is based on the classification. Table 4 shows the treatment of cleft hand divided into the classification of Manske and Halikis.
Techniques described by Ueba, Miura and Komada and the procedure of Snow-Littler are guidelines; since clinical and anatomical presentation within the types differ, the actual treatment is based on the individual abnormality.
Table 4: Treatment based on the classification of Manske and Halikis
Treatment of manifestations: special hair care products to help manage dry and sparse hair; wigs; artificial nails; emollients to relieve palmoplantar hyperkeratosis.
The timing of surgical interventions is debatable. Parents have to decide about their child in a very vulnerable time of their parenthood. Indications for early treatment are progressive deformities, such as syndactyly between index and thumb or transverse bones between the digital rays. Other surgical interventions are less urgent and can wait for 1 or 2 years.
Webbed toes can be separated through surgery. Surgical separation of webbed toes is an example of body modification.
As with any form of surgery, there are risks of complications.
The end results depend on the extent of the webbing and underlying bone structure. There is usually some degree of scarring, and skin grafts may be required. In rare instances, nerve damage may lead to loss of feeling in the toes and a tingling sensation. There are also reports of partial web grow-back. The skin grafts needed to fill in the space between the toes can lead to additional scars in the places where the skin is removed.
There is no specific treatment or cure for individuals affected with this type of syndrome, though some of the abnormal physical features may be surgically correctable.
A disease that threatens the eyesight and additionally produces a hair anomaly that is apparent to strangers causes harm beyond the physical. It is therefore not surprising that learning the diagnosis is a shock to the patient. This is as true of the affected children as of their parents and relatives. They are confronted with a statement that there are at present no treatment options. They probably have never felt so alone and abandoned in their lives. The question comes to mind, "Why me/my child?" However, there is always hope and especially for affected children, the first priority should be a happy childhood. Too many examinations and doctor appointments take up time and cannot practically solve the problem of a genetic mutation within a few months. It is therefore advisable for parents to treat their child with empathy, but to raise him or her to be independent and self-confident by the teenage years. Openness about the disease and talking with those affected about their experiences, even though its rarity makes it unlikely that others will be personally affected by it, will together assist in managing life.
Unerupted microdonts may require surgical removal to prevent the formation of cysts. Erupted microdonts, peg laterals especially, may cause cosmetic concern. Such teeth may be restored to resemble normal sized teeth, typically with composite build ups or crowns. Orthodontics may be required in severe cases to close gaps between the teeth.
Lelis syndrome it is a genetic disorder, a rare condition with dermatological and dental findings characterized by the association of ectodermal dysplasia (hypotrichosis and hypohidrosis) with acanthosis nigricans. Other clinical features may include palmoplantar hyperkeratosis, nail dystrophy, intellectual deficit, disturbances of skin pigmentation (perioral and periorbital hyperpigmentation, vitiligo, and perinevic leukoderma) and hypodontia. Transmission is autosomal recessive.
Howel–Evans syndrome is an extremely rare condition involving thickening of the skin in the palms of the hands and the soles of the feet (hyperkeratosis). This familial disease is associated with a high lifetime risk of esophageal cancer. For this reason, it is sometimes known as tylosis with oesophageal cancer (TOC).
The condition is inherited in an autosomal dominant manner, and it has been linked to a mutation in the "RHBDF2" gene. It was first described in 1958.
Acro–dermato–ungual–lacrimal–tooth (ADULT) syndrome is a rare genetic disease. ADULT syndrome is an autosomal dominant form of ectodermal dysplasia, a group of disorders that affects the hair, teeth, nails, sweat glands, and extremities. The syndrome arises from a mutation in the TP63 gene. This disease was previously thought to be a form of ectrodactyly–ectodermal dysplasia–cleft syndrome (EEC), but was classified as a different disease in 1993 by Propping and Zerres.
Naegeli–Franceschetti–Jadassohn syndrome (NFJS), also known as chromatophore nevus of Naegeli and Naegeli syndrome, is a rare autosomal dominant form of ectodermal dysplasia, characterized by reticular skin pigmentation, diminished function of the sweat glands, the absence of teeth and hyperkeratosis of the palms and soles. One of the most striking features is the absence of fingerprint lines on the fingers.
Naegeli syndrome is similar to dermatopathia pigmentosa reticularis, both of which are caused by a specific defect in the keratin 14 protein.
EEM syndrome (or Ectodermal dysplasia, Ectrodactyly and Macular dystrophy syndrome) is an autosomal recessive congenital malformation disorder affecting tissues associated with the ectoderm (skin, hair, nails, teeth), and also the hands, feet and eyes.
Rosselli–Gulienetti syndrome, also known as Zlotogora–Ogur syndrome and Bowen–Armstrong syndrome, is a type of congenital ectodermal dysplasia syndrome. The syndrome is relatively rare and has only been described in a few cases.
ANOTHER syndrome consists of alopecia, nail dystrophy, ophthalmic complications, thyroid dysfunction, hypohidrosis, ephelides and enteropathy, and respiratory tract infections. This is an autosomal recessive variant of ectodermal dysplasia.
Focal dermal hypoplasia (also known as "Goltz syndrome") is a form of ectodermal dysplasia. It is a multisystem disorder characterized primarily by skin manifestations to the atrophic and hypoplastic areas of skin which are present at birth. These defects manifest as yellow-pink bumps on the skin and pigmentation changes. The disorder is also associated with shortness of stature and some evidence suggests that it can cause epilepsy.
Focal facial dermal dysplasia (FFDD) is a rare genetically heterogeneous group of disorders that are characterized by congenital bilateral scar like facial lesions, with or without associated facial anomalies. It is characterized by hairless lesions with fingerprint like puckering of the skin, especially at the temples, due to alternating bands of dermal and epidermal atrophy.
This condition is also known as Brauer syndrome (hereditary symmetrical aplastic nevi of temples, bitemporal aplasia cutis congenita, bitemporal aplasia cutis congenita: OMIM ) and Setleis syndrome (facial ectodermal dysplasia: OMIM ).
Popliteal pterygium syndrome (PPS) is an inherited condition affecting the face, limbs, and genitalia. The syndrome goes by a number of names including the "popliteal web syndrome" and, more inclusively, the "facio-genito-popliteal syndrome". The term PPS was coined by Gorlin "et al.." in 1968 on the basis of the most unusual anomaly, the popliteal pterygium (a web behind the knee).