Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
African tick bite fever is usually mild, and most patients do not need more than at-home treatment with antibiotics for their illness. However, because so few patients with this infection visit a doctor, the best antibiotic choice, dose and length of treatment are not well known. Typically doctors treat this disease with antibiotics that have been used effectively for the treatment of other diseases caused by bacteria of similar species, such as Rocky Mountain Spotted Fever.
For mild cases, people are usually treated with one of the following:
- doxycycline
- chloramphenicol
- ciprofloxacin
If a person has more severe symptoms, like a high fever or serious headache, the infection can be treated with doxycycline for a longer amount of time. Pregnant women should not use doxycycline or ciprofloxacin as both antibiotics can cause problems in fetuses. Josamycin has been used effectively for treatment of pregnant women with other rickettsial diseases, but it is unclear if it has a role in the treatment of ATBF.
Appropriate antibiotic treatment should be started immediately when there is a suspicion of Rocky Mountain spotted fever on the basis of clinical and epidemiological findings. Treatment should not be delayed until laboratory confirmation is obtained. In fact, failure to respond to a tetracycline argues against a diagnosis of Rocky Mountain spotted fever. Severely ill patients may require longer periods before their fever resolves, especially if they have experienced damage to multiple organ systems. Preventive therapy in healthy patients who have had recent tick bites is not recommended and may, in fact, only delay the onset of disease.
Doxycycline (a tetracycline) (for adults at 100 milligrams every 12 hours, or for children under at 4 mg/kg of body weight per day in two divided doses) is the drug of choice for patients with Rocky Mountain spotted fever, being one of the only instances doxycycline is used in children. Treatment should be continued for at least three days after the fever subsides, and until there is unequivocal evidence of clinical improvement. This will be generally for a minimum time of five to ten days. Severe or complicated outbreaks may require longer treatment courses. Doxycycline/ tetracycline is also the preferred drug for patients with ehrlichiosis, another tick-transmitted infection with signs and symptoms that may resemble those of Rocky Mountain spotted fever.
Chloramphenicol is an alternative drug that can be used to treat Rocky Mountain spotted fever, specifically in pregnancy. However, this drug may be associated with a wide range of side effects, and careful monitoring of blood levels can be required.
Tick control is the most effective method of prevention, but tetracycline at a lower dose can be given daily for 200 days during the tick season in endemic regions.
Supportive care must be provided to animals that have clinical signs. Subcutaneous or intravenous fluids are given to dehydrated animals, and severely anemic dogs may require a blood transfusion. Treatment for ehrlichiosis involves the use of antibiotics such as tetracycline or doxycycline for a period of at least six to eight weeks; response to the drugs may take one month. Treatment with macrolide antibiotics like clarithromycin and azithromycin is being studied. In addition, steroids may be indicated in severe cases in which the level of platelets is so low that the condition is life-threatening.
Effective antibiotics include penicillin G, ampicillin, amoxicillin and doxycycline. In more severe cases cefotaxime or ceftriaxone should be preferred.
Glucose and salt solution infusions may be administered; dialysis is used in serious cases. Elevations of serum potassium are common and if the potassium level gets too high special measures must be taken. Serum phosphorus levels may likewise increase to unacceptable levels due to kidney failure.
Treatment for hyperphosphatemia consists of treating the underlying disease, dialysis where appropriate, or oral administration of calcium carbonate, but not without first checking the serum calcium levels (these two levels are related). Administration of corticosteroids in gradually reduced doses (e.g., prednisolone) for 7–10 days is recommended by some specialists in cases of severe hemorrhagic effects. Organ-specific care and treatment are essential in cases of kidney, liver, or heart involvement.
If infection occurs or is suspected, treatment is generally with the antibiotics streptomycin or gentamicin. Doxycycline was previously used. Gentamicin may be easier to obtain than streptomycin. There is also tentative evidence to support the use of fluoroquinolones.
Treatment usually involves a prescription of doxycycline (a normal dose would be 100 mg every 12 hours for adults) or a similar class of antibiotics. Oxytetracycline and imidocarb have also been shown to be effective. Supportive therapy such as blood products and fluids may be necessary.
Without treatment, the disease is often fatal. Since the use of antibiotics, case fatalities have decreased from 4–40% to less than 2%.
The drug most commonly used is doxycycline or tetracycline, but chloramphenicol is an alternative. Strains that are resistant to doxycycline and chloramphenicol have been reported in northern Thailand. Rifampicin and azithromycin are alternatives. Azithromycin is an alternative in children and pregnant women with scrub typhus, and when doxycycline resistance is suspected. Ciprofloxacin cannot be used safely in pregnancy and is associated with stillbirths and miscarriage.
Combination therapy with doxycycline and rifampicin is not recommended due to possible antagonism.
The treatment of melioidosis is divided into two stages, an intravenous high-intensity phase and an eradication phase to prevent recurrence.
- Intravenous intensive phase
- Eradication phase
Surgical drainage is usually indicated for prostatic abscesses and septic arthritis, may be indicated for parotid abscesses, and is not usually indicated for hepatosplenic abscesses. In bacteraemic melioidosis unresponsive to intravenous antibiotic therapy, splenectomy has been attempted, but only anecdotal evidence supports this practice.
Vaccines against anaplasmosis are available. Carrier animals should be eliminated from flocks. Tick control may also be useful although it can be difficult to implement.
There are no safe, available, approved vaccines against tularemia. However, vaccination research and development continues, with live attenuated vaccines being the most thoroughly researched and most likely candidate for approval. Sub-unit vaccine candidates, such as killed-whole cell vaccines, are also under investigation, however research has not reached a state of public use.
Optimal preventative practices include limiting direct exposure when handling potentially infected animals, such as wearing gloves and face masks while handling potentially infected animals (importantly when skinning deceased animals).
There is currently no treatment for AHS.
Control of an outbreak in an endemic region involves quarantine, vector control and vaccination. To prevent this disease, the affected horses are usually slaughtered, and the uninfected horses are vaccinated against the virus. Three vaccines currently exist, which include a polyvalent vaccine, a monovalent vaccine, and a monovalent inactivated vaccine. This disease can also be prevented by destroying the insect vector habitats using insecticides.
The infection is treated with antibiotics. Intravenous fluids and oxygen may be needed to stabilize the patient. There is a significant disparity between the untreated mortality and treated mortality rates: 10-60% untreated versus close to 0% treated with antibiotics within 8 days of initial infection. Tetracycline, Chloramphenicol, and doxycycline are commonly used. Infection can also be prevented by vaccination.
Some of the simplest methods of prevention and treatment focus on preventing infestation of body lice. Complete change of clothing, washing the infested clothing in hot water, and in some cases also treating recently used bedsheets all help to prevent typhus by removing potentially infected lice. Clothes also left unworn and unwashed for 7 days also cause both lice and their eggs to die, as they have no access to their human host. Another form of lice prevention requires dusting infested clothing with a powder consisting of 10% DDT, 1% malathion, or 1% permethrin, which kill lice and their eggs.
As for other flavivirus infections, no cure is known for yellow fever. Hospitalization is advisable and intensive care may be necessary because of rapid deterioration in some cases. Different methods for acute treatment of the disease have been shown not to be very successful; passive immunisation after emergence of symptoms is probably without effect. Ribavirin and other antiviral drugs, as well as treatment with interferons, do not have a positive effect in patients.
A symptomatic treatment includes rehydration and pain relief with drugs such as paracetamol (acetaminophen in the United States). Acetylsalicylic acid (aspirin) should not be given because of its anticoagulant effect, which can be devastating in the case of internal bleeding that can occur with yellow fever.
Prevention of ATBF centers around protecting oneself from tick bites by wearing long pants and shirt, and using insecticides like DEET on the skin. Travelers to rural areas in Africa and the West Indies should be aware that they may come in contact with ATBF tick vectors. Infection is more likely to occur in people who are traveling to rural areas or plan to spend time participating in outdoor activities. Extra caution should be taken in November - April, when "Amblyomma" ticks are more active. Inspection of the body, clothing, gear, and any pets after time outdoors can help to identify and remove ticks early.
Control requires treatment of antibiotics and vaccines prescribed by a doctor. Major control treatments for paratyphoid fever include ciprofloxacin for ten days, ceftriaxone/cefotaxime for 14 days, or aziththromycin.
Doxycycline has been provided once a week as a prophylaxis to minimize infections during outbreaks in endemic regions. However, there is no evidence that chemoprophylaxis is effective in containing outbreaks of leptospirosis, and use of antibiotics increases antibiotics resistance. Pre-exposure prophylaxis may be beneficial for individuals traveling to high-risk areas for a short stay.
Effective rat control and avoidance of urine contaminated water sources are essential preventive measures. Human vaccines are available only in a few countries, such as Cuba and China. Animal vaccines only cover a few strains of the bacteria. Dog vaccines are effective for at least one year.
Those diagnosed with Type A of the bacterial strain rarely die from it except in rare cases of severe intestinal complications. With proper testing and diagnosis, the mortality rate falls to less than 1%. Antibiotics such as azithromycin are particularly effective in treating the bacteria.
Currently, no specific treatment for chikungunya is available. Supportive care is recommended, and symptomatic treatment of fever and joint swelling includes the use of nonsteroidal anti-inflammatory drugs such as naproxen, non-aspirin analgesics such as paracetamol (acetaminophen) and fluids. Aspirin is not recommended due to the increased risk of bleeding. Despite anti-inflammatory effects, corticosteroids are not recommended during the acute phase of disease, as they may cause immunosuppression and worsen infection.
Passive immunotherapy has potential benefit in treatment of chikungunya. Studies in animals using passive immunotherapy have been effective, and clinical studies using passive immunotherapy in those particularly vulnerable to severe infection are currently in progress. Passive immunotherapy involves administration of anti-CHIKV hyperimmune human intravenous antibodies (immunoglobulins) to those exposed to a high risk of chikungunya infection. No antiviral treatment for chikungunya virus is currently available, though testing has shown several medications to be effective "in vitro".
In those who have more than two weeks of arthritis, ribavirin may be useful. The effect of chloroquine is not clear. It does not appear to help acute disease, but tentative evidence indicates it might help those with chronic arthritis. Steroids do not appear to be an effective treatment. NSAIDs and simple analgesics can be used to provide partial symptom relief in most cases. Methotrexate, a drug used in the treatment of rheumatoid arthritis, has been shown to have benefit in treating inflammatory polyarthritis resulting from chikungunya, though the drug mechanism for improving viral arthritis is unclear.
Most people recover from West Nile virus without treatment. No specific treatment is available for WNV infection. In mild cases over the counter pain relievers can help ease mild headaches and muscle aches in adults. In severe cases treatment consists of supportive care that often involves hospitalization, intravenous fluids, pain medication, respiratory support, and prevention of secondary infections.
As with many diseases in developing nations, (including trypanosomiasis and malaria) effective and affordable chemotherapy is sorely lacking and parasites or insect vectors are becoming increasingly resistant to existing anti-parasite drugs. Possibly due to the lack of financial return, new drugs are slow to emerge and much of the basic research into potential drug targets takes place in universities, funded by charitable organizations. Product Development Partnerships (PDPs) like Drugs for Neglected Diseases "initiatives" also work on the development of new treatments (combination treatments and new chemical entities) for visceral leishmaniasis.
The traditional treatment is with pentavalent antimonials such as sodium stibogluconate and meglumine antimoniate. Resistance is now common in India, and rates of resistance have been shown to be as high as 60% in parts of Bihar, India.
The treatment of choice for visceral leishmaniasis acquired in India is now Amphotericin B in its various liposomal preparations. In East Africa, the WHO recommended treatment is SSG&PM (sodium stibogluconate and paromomycin) developed by Drugs for Neglected Diseases "initiative" (DNDi)in 2010.
Miltefosine is the first oral treatment for this disease. The cure rate of miltefosine in Phase III clinical trials is 95%; Studies in Ethiopia show that is also effective in Africa. In HIV immunosuppressed people which are coinfected with leishmaniasis it has shown that even in resistant cases 2/3 of the people responded to this new treatment.
Miltefosine has received approval by the Indian regulatory authorities in 2002, in Germany in 2004 and in U.S.A. in 2014. It is now registered in many countries.
The drug is generally better tolerated than other drugs. Main side effects are gastrointestinal disturbance in the first or second day of treatment (a course of treatment is 28 days) which does not affect the efficacy. Because it is available as an oral formulation, the expense and inconvenience of hospitalization is avoided, and outpatient distribution of the drug becomes an option, making Miltefosine a drug of choice.
Incomplete treatment has been cited as a major reason of death from visceral leishmaniasis.
The nonprofit Institute for OneWorld Health has adopted the broad spectrum antibiotic paromomycin for use in treating VL; its antileishmanial properties were first identified in the 1980s. A treatment with paromomycin costs about $15 USD. The drug had originally been identified in the 1960s. The Indian government approved paromomycin for sale and use in August 2006.
There is no cure for EEE. Treatment consists of corticosteroids, anticonvulsants, and supportive measures (treating symptoms) such as intravenous fluids, tracheal intubation, and antipyretics. About four percent of humans known to be infected develop symptoms, with a total of about six cases per year in the US. A third of these cases die, and many survivors suffer permanent brain damage.
African horse sickness was diagnosed in Spain in 1987–90 and in Portugal in 1989, but was eradicated using slaughter policies, movement restrictions, vector eradication, and vaccination.