Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
At the hospital, physicians follow standard protocol for managing seizures. Cluster seizures are generally controlled by benzodiazepines such as diazepam, midazolam, lorazepam or clonazepam. The use of oxygen is recommended in the United States, but in Europe it is only recommended in cases of prolonged epileptic status.
Antiepileptic drugs (AEDs) are used in most cases to control seizures, however, PCDH19 gene-related epilepsy is generally associated with early-onset development of drug resistant seizures. Existing data supports the use of “rational polypharmacy,” which consists of a step-wise addition of AEDs until a patient responds favorably or experiences intolerable adverse events. In general, as in other types of uncontrolled epilepsy, the use of drugs with different mechanisms of action appears to be more effective than combining drugs with similar mechanisms of action.
No currently marketed AEDs have been extensively studied in PCDH19 gene-related epilepsy and there is no established treatment strategy for girls diagnosed with PCDH19 gene-related epilepsy. Patients may respond well to treatment with levetiracetam and in cases of drug resistance, stiripentol, which is not approved in the U.S. but is available through the FDA Expanded Access IND process.
As of 2017, data on optimal treatment was limited. Therapies with hormones is the standard of care, namely adrenocorticotrophic hormone (ACTH), or oral
corticosteroids such as prednisone. Vigabatrin is also a common consideration, though there is a risk of visual field loss with long term use. The high cost of ACTH leads doctors to avoid it in the US; higher dose prednisone appears to generate equivalent outcomes.
As of 2017 data from clinical trials of the ketogenic diet for treating infantile spams was inconsistent; most trials were as a second-line therapy after failure of drug treatment, and as of 2017 it had not been explored as a first line treatment in an adequately designed clinical trial.
The most effective anti-epileptic medication for JME is valproic acid (Depakote). Women are often started on alternative medications due to valproic acid's high incidence of fetal malformations. Lamotrigine, levetiracetam, topiramate, and zonisamide are alternative anti-epileptic medications with less frequent incidence of pregnancy related complications, and they are often used first in females of childbearing age. Carbamazepine may aggravate primary generalized seizure disorders such as JME. Treatment is lifelong. Patients should be warned to avoid sleep deprivation.
CBPS is commonly treated with anticonvulsant therapy to reduce seizures. Therapies include anticonvulsant drugs, adrenocorticotropic hormone therapy, and surgical therapy, including focal corticectomy and callosotomy. Special education, speech therapy, and physical therapy are also used to help children with intellectual disability due to CBPS.
The first line treatment of choice for someone who is actively seizing is a benzodiazepine, most guidelines recommend lorazepam. This may be repeated if there is no effect after 10 minutes. If there is no effect after two doses, barbiturates or propofol may be used. Benzodiazepines given by a non-intravenous route appear to be better than those given by intravenous as the intravenous takes time to start.
Ongoing anti-epileptic medications are not typically recommended after a first seizure except in those with structural lesions in the brain. They are generally recommended after a second one has occurred. Approximately 70% of people can obtain full control with continuous use of medication. Typically one type of anticonvulsant is preferred. Following a first seizure, while immediate treatment with an anti-seizure drug lowers the probability of seizure recurrence up to five years it does not change the risk of death and there are potential side effects.
In seizures related to toxins, up to two doses of benzodiazepines should be used. If this is not effective pyridoxine is recommended. Phenytoin should generally not be used.
There is a lack of evidence for preventative anti-epileptic medications in the management of seizures related to intracranial venous thrombosis.
Currently, there is no cure for porencephaly because of the limited resources and knowledge about the neurological disorder. However, several treatment options are available. Treatment may include physical therapy, rehabilitation, medication for seizures or epilepsy, shunt (medical), or neurosurgery (removal of the cyst). According to the location, extent of the lesion, size of cavities, and severity of the disorder, combinations of treatment methods are imposed. In porencephaly patients, patients achieved good seizure control with appropriate drug therapy including valproate, carbamazepine, and clobazam. Also, anti-epileptic drugs served as another positive method of treatment.
Treatment for LKS usually consists of medications, such as anticonvulsants and corticosteroids (such as prednisone), and speech therapy, which should be started early. Some patients improve with the use of corticosteroids or adrenocorticotropin hormone (ACTH) which lead researches to believe that inflammation and vasospasm may play a role in some cases of acquired epileptic aphasia.
A controversial treatment option involves a surgical technique called multiple subpial transection in which multiple incisions are made through the cortex of the affected part of the brain beneath the pia mater, severing the axonal tracts in the subjacent white matter. The cortex is sliced in parallel lines to the midtemporal gyrus and perisylvian area to attenuate the spread of the epileptiform activity without causing cortical dysfunction. There is a study by Morrell "et al." in which results were reported for 14 patients with acquired epileptic aphasia who underwent multiple subpial transections. Seven of the fourteen patients recovered age-appropriate speech and no longer required speech therapy. Another 4 of the 14 displayed improvement of speech and understanding instructions given verbally, but they still required speech therapy. Eleven patients had language dysfunction for two or more years. Another study by Sawhney "et al." reported improvement in all three of their patients with acquired epileptic aphasia who underwent the same procedure.
Various hospitals contain programs designed to treat conditions such as LKS like the Children's Hospital Boston and its Augmentative Communication Program. It is known internationally for its work with children or adults who are non-speaking or severely impaired. Typically, a care team for children with LKS consists of a neurologist, a neuropsychologist, and a speech pathologist or audiologist. Some children with behavioral problems may also need to see a child psychologist and a psychopharmacologist. Speech therapy begins immediately at the time of diagnosis along with medical treatment that may include steroids and anti-epileptic or anti-convulsant medications.
Patient education has also proved to be helpful in treating LKS. Teaching them sign language is a helpful means of communication and if the child was able to read and write before the onset of LKS, that is extremely helpful too.
Helmets may be used to provide protection to the head during a seizure. Some claim that seizure response dogs, a form of service dog, can predict seizures. Evidence for this, however, is poor. At present there is not enough evidence to support the use of cannabis for the management of seizures, although this is an ongoing area of research. There is tentative evidence that a ketogenic diet may help in those who have epilepsy and is reasonable in those who do not improve following typical treatments.
Though there is limited evidence, outcomes appear to be relatively poor with a review of outcome studies finding that two thirds of PNES patients continue to experience episodes and more than half are dependent on social security at three-year followup. This outcome data was obtained in a referral-based academic epilepsy center and loss to follow-up was considerable; the authors point out ways in which this may have biased their outcome data. Outcome was shown to be better in patients with higher IQ, social status, greater educational attainments, younger age of onset and diagnosis, attacks with less dramatic features, and fewer additional somatoform complaints.
Unfortunately, there is no real way to prevent against vertiginous episodes out of the means of managing the disease. As head trauma is a major cause for vertiginous epilepsy, protecting the head from injury is an easy way to avoid possible onset of these seizures. With recent advances in science it is also possible for an individual to receive genetic screening, but this only tells if the subject is predisposed to developing the condition and will not aid in preventing the disease.
There is a range of ways to manage vertiginous epilepsy depending on the severity of the seizures. For simple partial seizures medical treatment is not always necessary. To the comfort of the patient, someone ailed with this disease may be able to lead a relatively normal life with vertiginous seizures. If, however, the seizures become too much to handle, antiepileptic medication can be administered as the first line of treatment. There are several different types of medication on the market to deter epileptic episodes but there is no support to show that one medication is more effective than another. In fact, research has shown that simple partial seizures do not usually respond well to medication, leaving the patient to self-manage their symptoms. A third option for treatment, used only in extreme cases when seizure symptoms disrupt daily life, is surgery wherein the surgeon will remove the epileptic region.
Current trends in treating the disorder include medications for symptom-based treatments that aim to minimize the secondary characteristics associated with the disorder. If an individual is diagnosed with FXS, genetic counseling for testing family members at risk for carrying the full mutation or premutation is a critical first-step. Due to a higher prevalence of FXS in boys, the most commonly used medications are stimulants that target hyperactivity, impulsivity, and attentional problems. For co-morbid disorders with FXS, antidepressants such as selective serotonin reuptake inhibitors (SSRIs) are utilized to treat the underlying anxiety, obsessive-compulsive behaviors, and mood disorders. Following antidepressants, antipsychotics such as Risperdal and Seroquel are used to treat high rates of self-injurious, aggressive and aberrant behaviors in this population (Bailey Jr et al., 2012). Anticonvulsants are another set of pharmacological treatments used to control seizures as well as mood swings in 13%–18% of individuals suffering from FXS. Drugs targeting the mGluR5 (metabotropic glutamate receptors) that are linked with synaptic plasticity are especially beneficial for targeted symptoms of FXS. Lithium is also currently being used in clinical trials with humans, showing significant improvements in behavioral functioning, adaptive behavior, and verbal memory. Alongside pharmacological treatments, environmental influences such as home environment and parental abilities as well as behavioral interventions such as speech therapy, sensory integration, etc. all factor in together to promote adaptive functioning for individuals with FXS.
Current pharmacological treatment centers on managing problem behaviors and psychiatric symptoms associated with FXS. However, as there has been very little research done in this specific population, the evidence to support the use of these medications in individuals with FXS is poor.
ADHD, which affects the majority of boys and 30% of girls with FXS, is frequently treated using stimulants. However, the use of stimulants in the fragile X population is associated with a greater frequency of adverse events including increased anxiety, irritability and mood lability. Anxiety, as well as mood and obsessive-compulsive symptoms, may be treated using SSRIs, although these can also aggravate hyperactivity and cause disinhibited behavior. Atypical antipsychotics can be used to stabilise mood and control aggression, especially in those with comorbid ASD. However, monitoring is required for metabolic side effects including weight gain and diabetes, as well as movement disorders related to extrapyramidal side effects such as tardive dyskinesia. Individuals with coexisting seizure disorder may require treatment with anticonvulsants.
The severity of the symptoms associated with porencephaly varies significantly across the population of those affected, depending on the location of the cyst and damage of the brain. For some patients with porencephaly, only minor neurological problems may develop, and those patients can live normal lives. Therefore, based on the level of severity, self-care is possible, but for the more serious cases lifelong care will be necessary. For those that have severe disability, early diagnosis, medication, participation in rehabilitation related to fine-motor control skills, and communication therapies can significantly improve the symptoms and ability of the patient with porencephaly to live a normal life. Infants with porencephaly that survive, with proper treatment, can display proper communication skills, movement, and live a normal life.
Treatment varies according to the type and severity of the encephalopathy. Anticonvulsants may be prescribed to reduce or halt any seizures. Changes to diet and nutritional supplements may help some patients. In severe cases, dialysis or organ replacement surgery may be needed.
Sympathomimetic drugs can increase motivation, cognition, motor performance and alertness in patients with encephalopathy caused by brain injury, chronic infections, strokes, brain tumors.
Current research at the University of Utah is investigating whether sodium oxybate, also known as Gamma-Hydroxybutyric acid is an effective treatment for AHC. Thus far, only a small number of patients have been sampled, and no conclusive results are yet available. While some success has been had thus far with the drug, AHC patients have been known to respond well initially to other drugs, but then the effectiveness will decline over time. Currently, sodium oxybate is used as a narcolepsy-cataplexy treatment, though in the past it has been used controversially in nutritional supplements. This drug was chosen to test because of a possible link between the causes of narcolepsy-cataplexy and AHC.
The most common drug used to treat AHC is flunarizine. Flunarizine functions by acting as a calcium channel blocker. Other drugs, in order of frequency of use are benzodiazepines, carbamazapine, barbiturates, and valproic acid. Flunarizine is prescribed for the purpose of reducing the severity of AHC attacks and the number of episodes, though it rarely stops attacks altogether. Minimizing the attacks may help reduce damage to the body from hemiplegic attacks and improve long-term outcomes as far as mental and physical disabilities are concerned.
Experts differ in their confidence in flunarizine's effectiveness. Some studies have found it to be very effective in reducing the duration, severity, and frequency of hemiplegic attacks. It is generally considered the best treatment available, but this drug is thought by some to be of little benefit to AHC patients. Many patients suffer adverse effects without seeing any improvement. Flunarizine also causes problems because it is difficult for patients to obtain, as it is not readily available in the United States.
No single cause of OS has been identified. In most cases, there is severe atrophy of both hemispheres of the brain. Less often, the root of the disorder is an underlying metabolic syndrome. Although it was initially published that no genetic connection had been established, several genes have since associated with Ohtahara syndrome. It can be associated with mutations in "ARX", "CDKL5", "SLC25A22", "STXBP1", "SPTAN1", "KCNQ2", "ARHGEF9", "PCDH19", "PNKP", "SCN2A", "PLCB1", "SCN8A", and likely others.
Treatment outlook is poor. Anticonvulsant drugs and glucocorticoid steroids may be used to try to control the seizures, but their effectiveness is limited. Most therapies are related to symptoms and day-to-day living.
There are no current treatments or cures for the underlying defects of FXS. Management of FXS may include speech therapy, behavioral therapy, sensory integration occupational therapy, special education, or individualised educational plans, and, when necessary, treatment of physical abnormalities. Persons with fragile X syndrome in their family histories are advised to seek genetic counseling to assess the likelihood of having children who are affected, and how severe any impairments may be in affected descendants.
There is no known cure for microcephaly. Treatment is symptomatic and supportive.
Medications that impede the release of excitatory neurotransmitters have been used to control or prevent spasms. Treatment with intrathecal baclofen, a gamma-aminobutyric acid (GABA) agonist, decreases muscle tone and has been shown to decrease the frequency of muscle spasms in ADCP patients. Tetrabenazine, a drug commonly used in the treatment of Huntington's disease, has been shown to be effective treating chorea.
Most patients suffering from KTS have epilepsy that is resistant to anti-epileptic agents. Some patients showed a partial response to treatment, but very few were able to stop their epilepsy through treatment. One case was responsive to treatment using Phenobartbital and vigabatrin which are both anti-epileptic agents. Spasticity can be treated with baclofen, but not all patients are responsive to the treatment.
Response to treatment is variable and the long-term and functional outcome is unknown. To provide a basis for improving the understanding of the epidemiology, genotype/phenotype correlation and outcome of these diseases their impact on the quality of life of patients, and for evaluating diagnostic and therapeutic strategies a patient registry was established by the noncommercial International Working Group on Neurotransmitter Related Disorders (iNTD).
Physical therapy and Occupational Therapy are staple treatments of ADCP. Physical therapy is initiated soon after diagnosis and typically focuses on trunk strength and maintaining posture. Physical therapy helps to improve mobility, range of motion, functional ability, and quality of life. Specific exercises and activities prescribed by a therapist help to prevent muscles from deteriorating or becoming locked in position and help to improve coordination. Occupational therapy interventions for children with CP can include feeding, dressing, bathing, toileting, grooming, pencil grasp and handwriting skills, play, and use of adaptive equipment.
The onset of Wernicke's encephalopathy is considered a medical emergency, and thus thiamine administration should be initiated immediately when the disease is suspected. Prompt administration of thiamine to patients with Wernicke's encephalopathy can prevent the disorder from developing into Wernicke–Korsakoff syndrome, or reduce its severity. Treatment can also reduce the progression of the deficits caused by WKS, but will not completely reverse existing deficits. WKS will continue to be present, at least partially, in 80% of patients. Patients suffering from WE should be given a minimum dose of 500 mg of thiamine hydrochloride, delivered by infusion over a 30-minute period for two to three days. If no response is seen then treatment should be discontinued but for those patients that do respond, treatment should be continued with a 250 mg dose delivered intravenously or intramuscularly for three to five days unless the patient stops improving. Such prompt administration of thiamine may be a life-saving measure. Banana bags, a bag of intravenous fluids containing vitamins and minerals, is one means of treatment.
It is not possible to make a generalised prognosis for development due to the variability of causes, as mentioned above, the differing types of symptoms and cause. Each case must be considered individually.
The prognosis for children with idiopathic West syndrome are mostly more positive than for those with the cryptogenic or symptomatic forms. Idiopathic cases are less likely to show signs of developmental problems before the attacks begin, the attacks can often be treated more easily and effectively and there is a lower relapse rate. Children with this form of the syndrome are less likely to go on to develop other forms of epilepsy; around two in every five children develop at the same rate as healthy children.
In other cases, however, treatment of West syndrome is relatively difficult and the results of therapy often dissatisfying; for children with symptomatic and cryptogenic West syndrome, the prognosis is generally not positive, especially when they prove resistant to therapy.
Statistically, 5 out of every 100 children with West syndrome do not survive beyond five years of age, in some cases due to the cause of the syndrome, in others for reasons related to their medication. Only less than half of all children can become entirely free from attacks with the help of medication. Statistics show that treatment produces a satisfactory result in around three out of ten cases, with only one in every 25 children's cognitive and motoric development developing more or less normally.
A large proportion (up to 90%) of children suffer severe physical and cognitive impairments, even when treatment for the attacks is successful. This is not usually because of the epileptic fits, but rather because of the causes behind them (cerebral anomalies or their location or degree of severity). Severe, frequent attacks can (further) damage the brain.
Permanent damage often associated with West syndrome in the literature include cognitive disabilities, learning difficulties and behavioural problems, cerebral palsy (up to 5 out of 10 children), psychological disorders and often autism (in around 3 out of 10 children). Once more, the cause of each individual case of West syndrome must be considered when debating cause and effect.
As many as 6 out of 10 children with West syndrome suffer from epilepsy later in life. Sometimes West syndrome turns into a focal or other generalised epilepsy. Around half of all children develop Lennox-Gastaut syndrome.