Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Tolcapone inhibits the activity COMT, an enzyme which degrades dopamine. It has been used to complement levodopa; however, its usefulness is limited by possible complications such as liver damage. A similarly effective drug, entacapone, has not been shown to cause significant alterations of liver function. Licensed preparations of entacapone contain entacapone alone or in combination with carbidopa and levodopa.
Several dopamine agonists that bind to dopamine receptors in the brain have similar effects to levodopa. These were initially used as a complementary therapy to levodopa for individuals experiencing levodopa complications (on-off fluctuations and dyskinesias); they are now mainly used on their own as first therapy for the motor symptoms of PD with the aim of delaying the initiation of levodopa therapy and so delaying the onset of levodopa's complications. Dopamine agonists include bromocriptine, pergolide, pramipexole, ropinirole, piribedil, cabergoline, apomorphine and lisuride.
Though dopamine agonists are less effective than levodopa at controlling PD motor symptoms, they are usually effective enough to manage these symptoms in the first years of treatment. Dyskinesias due to dopamine agonists are rare in younger people who have PD but, along with other complications, become more common with older age at onset. Thus dopamine agonists are the preferred initial treatment for younger onset PD, and levodopa is preferred for older onset PD.
Dopamine agonists produce significant, although usually mild, side effects including drowsiness, hallucinations, insomnia, nausea, and constipation. Sometimes side effects appear even at a minimal clinically effective dose, leading the physician to search for a different drug. Agonists have been related to impulse control disorders (such as compulsive sexual activity, eating, gambling and shopping) even more strongly than levodopa. They tend to be more expensive than levodopa.
Apomorphine, a non-orally administered dopamine agonist, may be used to reduce off periods and dyskinesia in late PD. It is administered by intermittent injections or continuous subcutaneous infusions. Since secondary effects such as confusion and hallucinations are common, individuals receiving apomorphine treatment should be closely monitored. Two dopamine agonists that are administered through skin patches (lisuride and rotigotine) and are useful for people in the initial stages and possibly to control off states in those in the advanced state.
There is no known cure for MSA and management is primarily supportive.
Ongoing care from a neurologist specializing in "movement disorders" is recommended as the complex symptoms of MSA are often not familiar to less-specialized health care professionals.
One particularly serious problem, the drop in blood pressure upon standing up (with risk of fainting and thus injury from falling) often responds to fludrocortisone, a synthetic mineralocorticoid. Another common drug treatment is midodrine (an alpha-agonist). Non-drug treatments include "head-up tilt" (elevating the head of the whole bed by about 10 degrees), salt tablets or increasing salt in the diet, generous intake of fluids, and pressure (elastic) stockings. Avoidance of triggers of low blood pressure (such as hot weather, alcohol, and dehydration) are crucial.
Hospice/homecare services can be very useful as disability progresses.
Levodopa (L-Dopa), a drug used in the treatment of Parkinson's disease, improves parkinsonian symptoms in a small percentage of MSA patients. A recent trial reported that only 1.5% of MSA patients experienced a less than 50% improvement when taking levodopa, and even this was a transient effect lasting less than one year. Poor response to L-Dopa has been suggested as a possible element in the differential diagnosis of MSA from Parkinson's disease.
A November, 2008 study conducted in Europe failed to find an effect for the drug riluzole in treating MSA or PSP.
Management by rehabilitation professionals (physiatrists, physiotherapists, occupational therapists, speech therapists, and others) for problems with walking/movement, daily tasks, and speech problems is essential.
Physiotherapy can help to maintain the patient’s mobility and will help to prevent contractures. Instructing patients in gait training will help to improve their mobility and decrease their risk of falls. A physiotherapist may also prescribe mobility aids such as a cane or a walker to increase the patient’s safety. Other ways a physiotherapist can help to improve the patient’s safety are to teach them to move and transfer from sitting to standing slowly to decrease risk of falls and limit the effect of postural hypotension. Instruction in ankle pumping helps to return blood in the legs to the systemic circulation. To further control the postural hypotension, raising the head of the bed by 8 in (20.3 cm) while sleeping may be indicated as well as the use of elastic compression garments.
Speech and language therapists may assist in assessing, treating and supporting speech (dysarthria) and swallowing difficulties (dysphagia). Early intervention of swallowing difficulties is particularly useful to allow for discussion around tube feeding further in the disease progression.{doubtful - citation needed} At some point in the progression of the disease, fluid and food modification may be suggested. Speech changes mean that alternative communication may be needed, for example communication aids or word charts.
Social workers and occupational therapists can also help with coping with disability through the provision of equipment and home adaptations, services for caregivers and access to healthcare services, both for the person with MSA as well as family caregivers.
Pharmaceutical management, as with Parkinson's disease, involves striking a balance between treating the motor, emotive, and cognitive symptoms. Motor symptoms appear to respond somewhat to the medications used to treat Parkinson's disease (e.g. levodopa), while cognitive issues may improve with medications for Alzheimer's disease such as donepezil. Medications used in the treatment of ADHD (e.g. methylphenidate) might improve cognition or daytime sleepiness; however, medications for both Parkinson's disease and ADHD increase levels of the chemical dopamine in the brain, so increase the risk of hallucinations with those classes of pharmaceuticals.
Treatment of the movement and cognitive portions of the disease may worsen hallucinations and psychosis, while treatment of hallucinations and psychosis with antipsychotics may worsen parkinsonian or ADHD symptoms in DLB, such as tremor or rigidity and lack of concentration or impulse control. Physicians may find the use of cholinesterase inhibitors represents the treatment of choice for cognitive problems and donepezil (Aricept), rivastigmine (Exelon), and galantamine (Reminyl) may be recommended as a means to help with these problems and to slow or prevent the decline of cognitive function. DLB may be more responsive to donepezil than Alzheimer's disease. Memantine also may be useful. Levocarb may help with movement problems, but in some cases, as with dopamine agonists, may tend to aggravate psychosis in people with DLB. Clonazepam may help with rapid eye movement behavior disorder; table salt or antihypotensive medications may help with fainting and other problems associated with orthostatic hypotension. Botulinum toxin injections in the parotid glands may help with sialorrhea. Other medications, especially stimulants such as the ADHD drug methylphenidate (Ritalin) and modafinil, may improve daytime alertness, but as with the antiparkinsonian drug Levocarb, antihyperkinetics such as Ritalin increase the risk of psychosis. Experts advise extreme caution in the use of antipsychotic medication in people with DLB because of their sensitivity to these agents. When these medications must be used, atypical antipsychotics are preferred to typical antipsychotics; a very low dose should be tried initially and increased slowly, and patients should be carefully monitored for adverse reactions to the medications.
Due to hypersensitivity to neuroleptics, preventing DLB patients from taking these medications is important. People with DLB are at risk for neuroleptic malignant syndrome, a life-threatening illness, because of their sensitivity to these medications, especially the older typical antipsychotics, such as haloperidol. Other medications, including medications for urinary incontinence and the antihistamine medication diphenhydramine (Benadryl), also may worsen confusion.
Currently, treatment for FTDP-17 is only symptomatic and supportive.
No cure for dementia with Lewy bodies is known. Treatment may offer symptomatic benefit, but remains palliative in nature. Current treatment modalities are divided into pharmaceutical and caregiving.
Parkinson-plus syndromes are usually more rapidly progressive and less likely to respond to antiparkinsonian medication than PD. However, the additional features of the diseases may respond to medications not used in PD.
Current therapy for Parkinson-plus syndromes is centered around a multidisciplinary treatment of symptoms.
These disorders have been linked to pesticide exposure.
There is no known cure for PSP and management is primarily supportive. PSP cases are often split into two subgroups, PSP-Richardson, the classic type, and PSP-Parkinsonism, where a short-term response to levodopa can be obtained. Dyskinesia is an occasional but rare complication of treatment. Amantadine is also sometimes helpful. After a few years the Parkinsonian variant tends to take on Richardson features. Other variants have been described. Botox can be used to treat neck dystonia and blephrospasm, but this can aggravate dysphagia.
Two studies have suggested that rivastigmine may help with cognitive aspects, but the authors of both studies have suggested a larger sampling be used. There is some evidence that the hypnotic zolpidem may improve motor function and eye movements, but only from small-scale studies.
Batten disease is a terminal illness; the FDA has approved Brineura (cerliponase alfa) as a treatment for a specific form of Batten disease. Brineura is the first FDA-approved treatment to slow loss of walking ability (ambulation) in symptomatic pediatric patients 3 years of age and older with late infantile neuronal ceroid lipofuscinosis type 2 (CLN2), also known as tripeptidyl peptidase-1 (TPP1) deficiency. Palliative treatment is symptomatic and supportive.
Patients with PSP usually seek or are referred to occupational therapy, speech-language pathology for motor speech changes typically a spastic-ataxic dysarthria, and physical therapy for balance and gait problems with reports of frequent falls. Evidence-based approaches to rehabilitation in PSP are lacking, and currently the majority of research on the subject consists of case reports involving only a small number of patients.
Case reports of rehabilitation programs for patients with PSP generally include limb-coordination activities, tilt-board balancing, gait training, strength training with progressive resistive exercises and isokinetic exercises and stretching of the neck muscles. While some case reports suggest that physiotherapy can offer improvements in balance and gait of patients with PSP, the results cannot be generalized across all patients with PSP as each case report only followed one or two patients. The observations made from these case studies can be useful, however, in helping to guide future research concerning the effectiveness of balance and gait training programs in the management of PSP.
Individuals with PSP are often referred to occupational therapists to help manage their condition and to help enhance their independence. This may include being taught to use mobility aids. Due to their tendency to fall backwards, the use of a walker, particularly one that can be weighted in the front, is recommended over a cane. The use of an appropriate mobility aid will help to decrease the individual’s risk of falls and make them safer to ambulate independently in the community.
Due to their balance problems and irregular movements individuals will need to spend time learning how to safely transfer in their homes as well as in the community. This may include rising from and sitting in chairs safely.
Due to the progressive nature of this disease, all individuals eventually lose their ability to walk and will need to progress to using a wheelchair. Severe dysphagia often follows, and at this point death is often a matter of months.
Treatment is palliative, not curative (as of 2009).
Treatment options for lower limb weakness such as foot drop can be through the use of Ankle Foot Orthoses (AFOs) which can be designed or selected by an Orthotist based upon clinical need of the individual. Sometimes tuning of rigid AFOs can enhance knee stability.
Nucleoside bypass therapy is an experimental treatment aimed to restore the normal levels of deoxyribonucleotides (dNTPs) in mitochondria.
There are no treatments for MDDS, but some of the symptoms can be managed. For survivors living with MDDS, there are drugs to control epilepsy, and physical therapy can help with muscle control. Liver transplants may benefit people with liver involvement.
Because lack of sialic acid appears to be part of the pathology of IBM caused by GNE mutations, clinical trials with sialic acid supplements, and with a precursor of sialic acid, N-Acetylmannosamine, have been conducted, and as of 2016 further trials were planned.
Successful management of seizures plays a key role in improving quality of life. Antiepileptic medications are the main therapies for seizures; however, it appears that seizures in this syndrome do not respond well to drugs. In the cases reported in literature, numerous new and old antiepileptic drugs have been tried, but no one drug appears to be more efficacious than others. Therefore, no recommendations can be made regarding the selection of the most appropriate antiepileptic drug. As not all cases of ring chromosome 20 syndrome are the same, different individuals may respond to treatment in different ways.Alternates to antiepileptic drug treatment include the ketogenic diet and vagus nerve stimulation but not epilepsy surgery.
In terms of the management of spinal and bulbar muscular atrophy, no cure is known and treatment is supportive. Rehabilitation to slow muscle weakness can prove positive, though the prognosis indicates some individuals will require the use of a wheelchair in later stages of life.
Surgery may achieve correction of the spine, and early surgical intervention should be done in cases where prolonged survival is expected. Preferred nonsurgical treatment occurs due to the high rate of repeated dislocation of the hip.
PKD patients usually show a good response to anticonvulsants. Most commonly used medications are sodium blockers, carbamazepine and phenytoin. During a drug-testing study, patients reported a decreasing response to the latter use of anticonvulsants and switched to carbamazepine or phenytoin. Refraining from established triggers such as sudden movement has been shown to lessen attacks occurrences. Avoidance of predisposing factors such as stress, excitement, and fatigue also help manage attacks.
Medical management may involve immunosuppressive drugs such as methotrexate, corticosteroids, cyclophosphamide, and azathioprine. No randomized controlled trials have yet been conducted to evaluate such treatments, so the benefits have not been clearly established.
The ketogenic diet is a high fat, low carbohydrate diet reserved for intractable childhood epilepsies. There are no published reports on the use of the ketogenic diet in patients with ring chromosome 20 syndrome. However, its efficacy and safety are well established in other difficult to control epilepsy syndromes.
Cardiac and respiratory complications are treated symptomatically. Physical and occupational therapy may be beneficial for some patients. Alterations in diet may provide temporary improvement but will not alter the course of the disease. Genetic counseling can provide families with information regarding risk in future pregnancies.
On April 28, 2006 the US Food and Drug Administration approved a Biologic License Application (BLA) for Myozyme (alglucosidase alfa, rhGAA), the first treatment for patients with Pompe disease, developed by a team of Duke University researchers. This was based on enzyme replacement therapy using biologically active recombinant human alglucosidase alfa produced in Chinese Hamster Ovary cells. Myozyme falls under the FDA Orphan Drug designation and was approved under a priority review.
The FDA has approved Myozyme for administration by intravenous infusion of the solution. The safety and efficacy of Myozyme were assessed in two separate clinical trials in 39 infantile-onset patients with Pompe disease ranging in age from 1 month to 3.5 years at the time of the first infusion. Myozyme treatment clearly prolongs ventilator-free survival and overall survival. Early diagnosis and early treatment leads to much better outcomes. The treatment is not without side effects which include fever, flushing, skin rash, increased heart rate and even shock; these conditions, however, are usually manageable.
Myozyme costs an average of US$300,000 a year and must be taken for the patients' entire life, so some American insurers have refused to pay for it. On August 14, 2006, Health Canada approved Myozyme for the treatment of Pompe disease. On June 14, 2007 the Canadian Common Drug Review issued their recommendations regarding public funding for Myozyme therapy. Their recommendation was to provide funding to treat a very small subset of Pompe patients (Infants less one year of age with cardiomyopathy). Genzyme received broad approval in the European Union. On May 26, 2010 FDA approved Lumizyme, a similar version of Myozyme, for the treament of late-onset Pompe disease.
A new treatment option for this disease is called Lumizyme. Lumizyme and Myozyme have the same generic ingredient (Alglucosidase Alfa) and manufacturer (Genzyme Corporation). The difference between these two products is in the manufacturing process. Today, the Myozyme is made using a 160-L bioreactor, while the Lumizyme uses a 4000-L bioreactor. Because of the difference in the manufacturing process, the FDA claims that the two products are biologically different. Moreover, Lumizyme is FDA approved as replacement therapy for late-onset (noninfantile) Pompe disease without evidence of cardiac hypertrophy in patients 8 years and older. Myozyme is FDA approved for replacement therapy for infantile-onset Pompe disease.
Recent studies on chaperone molecules to be used with myozyme are starting to show promising results on animal models.
Treatment for PKND is more difficult than other Paroxysmal Dyskinesias. The majority of patients experience some relief from low dosages of clonazepam, a muscle relaxant and anticonvulsant. Similar to PKD, avoidance of stress, excitement, and fatigue will lower the frequency of PNKD attacks. Many patients also avoid known methyglyoxal containing foods and beverages such as alcohol, coffee, tea, and chocolate.
Affected individuals may benefit from autologous fat transfer or fat grafts to restore a more normal contour to the face. However, greater volume defects may require microsurgical reconstructive surgery which may involve the transfer of an island parascapular fasciocutaneous flap or a free flap from the groin, rectus abdominis muscle (Transverse Rectus Abdominis Myocutaneous or "TRAM" flap) or latissimus dorsi muscle to the face. Severe deformities may require additional procedures, such as pedicled temporal fascia flaps, cartilage grafts, bone grafts, orthognathic surgery, and bone distraction. The timing of surgical intervention is controversial; some surgeons prefer to wait until the disease has run its course while others recommend early intervention.
In June 1987, a phase-I clinical trial was launched at Weill Cornell Medical College of Cornell University to study a gene therapy method for treatment of the signs and symptoms of LINCL. The experimental drug works by delivering a gene transfer vector called AAV2CUhCLN2 to the brain. Although the trial is not matched, randomized, or blinded and lacked a contemporaneous placebo/sham control group, assessment of the primary outcome variable suggests a slowing of progression of LINCL in the treated children.
Researchers believe the neurological deficits common in JNCL could be due to overactive AMPA receptors in the cerebellum. To test this hypothesis, researchers administered AMPA antagonist drugs into affected mice. The motor skills of the affected mice showed significant improvement after the antagonist treatment, which supported the hypothesis that the neurological deficits in JNCL are due to overactive AMPA receptors. This research could eventually help to alleviate neurological deficits of JNCL in humans.
In November 2006, after receiving FDA clearance, neurosurgeon Nathan Selden, pediatrician Bob Steiner, and colleagues at Doernbecher Children's Hospital at Oregon Health and Science University began a clinical study in which purified neural stem cells were injected into the brain of Daniel Kerner, a six-year-old child with Batten disease, who had lost the ability to walk and talk. This patient was the first of six to receive the injection of a stem cell product from StemCells Inc., a Palo Alto biotech company. These are believed to be the first-ever transplants of fetal stem cells into the human brain. By early December, the child had recovered well enough to return home, and some signs of speech returning were reported. Daniel Kerner died on April 12, 2010. The main goal of phase-I clinical trials, however, was to investigate the safety of transplantation. Overall, the phase-I data demonstrated that high doses of human neural stem cells, delivered by a direct transplantation procedure into multiple sites within the brain, followed by 12 months of immunosuppression, were well tolerated by all six patients enrolled in the trial. The patients’ medical, neurological, and neuropsychological conditions, following transplantation, appeared consistent with the normal course of the disease.
Mycophenolate mofetil is being tested to determine its ability to safely slow or halt neurodegeneration. A non-randomised safety and efficacy trial of a gene transfer vector is underway.
In those with SS, symptoms typically dramatically improve with low-dose administration of levodopa (L-dopa). L-DOPA exists as a biochemically significant metabolite of the amino acid phenylalanine, as well as a biological precursor of the catecholamine dopamine, a neurotransmitter. (Neurotransmitters are naturally produced molecules that may be sequestered following the propagation of an action potential down a nerve towards the axon terminal, which in turn may cross the synaptic junction between neurons, enabling neurons to communicate in a variety of ways.) Low-dose L-dopa usually results in near-complete or total reversal of all associated symptoms for these patients. In addition, the effectiveness of such therapy is typically long term, without the complications that often occur for those with Parkinson's disease who undergo L-dopa treatment. Thus, most experts indicate that this disorder is most appropriately known as dopa-responsive dystonia (SS).
No data are available on mortality associated with SS, but patients surviving beyond the fifth decade with treatment have been reported. However, in severe, early autosomal recessive forms of the disease, patients have been known to pass away during childhood. Girls seem to be somewhat more commonly affected. The disease less commonly begins during puberty or after age 20, and very rarely, cases in older adults have been reported.
Due to commonly being misdiagnosed, it is common for the disease to remain untreated. When left untreated, patients often need achilles tendon surgery by the age of 21. They will also struggle with walking, an ability that will degrade throughout the day. Power napping can provide temporary relief in untreated patients. It also impairs development into adulthood, reduces balance, and reduces calf muscle development. Socially, it can result in depression, lack of social skills, and inability to find employment.