Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Currently, no treatment slows the neurodegeneration in any of the neuroacanthocytosis disorders. Medication may be administered to decrease the involuntary movements produced by these syndromes. Antipsychotics are used to block dopamine, anticonvulsants treat seizures and botulinum toxin injections may control dystonia. Patients usually receive speech, occupational and physical therapies to help with the complications associated with movement. Sometimes, physicians will prescribe antidepressants for the psychological problems that accompany neuroacanthocytosis. Some success has been reported with Deep brain stimulation.
Mouthguards and other physical protective devices may be useful in preventing damage to the lips and tongue due to the orofacial chorea and dystonia typical of chorea acanthocytosis.
There is no cure for XDP and medical treatment offers only temporary relief. Some authors have reported benzodiazepines and anticholinergic agents in the early stages of the disease. Botulinum toxin injections have been used to relieve focal dystonia. Deep brain stimulation has shown promise in the few cases treated surgically.
Treatment for autosomal dominant porencephaly type I is based on the symptoms that an individual is experiencing - for example, treatment of seizures with anticonvulsants. It is particularly important for individuals with this disorder and hypertension to control their blood pressure, as they are at higher risk of stroke. Other stroke prevention treatments include avoiding anticoagulants, smoking, and situations that may lead to head trauma.
There have been attempts to control the inflammation using drugs that work in other conditions where inflammation is a problem. The most successful of these are steroids, but they have side effects when used long term. Other medications, including methotrexate, colchicine and canakinumab, have been tried with some success. Otherwise, the treatment is supportive, or aimed solely at controlling symptoms and maximizing function.
Treatment is based
on the stage of the disease. Stage 1 does not
require treatment and
should be observed. 4
Neovascularization
(stage 2) responds well
to laser ablation or
cryotherapy.2,4 Eyes
with retinal detachments (stages
3 through 5) require surgery, with
earlier stages requiring scleral
buckles and later stages ultimately
needing vitrectomy. 2,4
More recently, the efficacy of
anti-VEGF intravitreal injections
has been studied. In one study,
these injections, as an in adjunct
with laser, helped early stages
achieve stabilization, but further
investigation is needed.6
The most common drug used to treat AHC is flunarizine. Flunarizine functions by acting as a calcium channel blocker. Other drugs, in order of frequency of use are benzodiazepines, carbamazapine, barbiturates, and valproic acid. Flunarizine is prescribed for the purpose of reducing the severity of AHC attacks and the number of episodes, though it rarely stops attacks altogether. Minimizing the attacks may help reduce damage to the body from hemiplegic attacks and improve long-term outcomes as far as mental and physical disabilities are concerned.
Experts differ in their confidence in flunarizine's effectiveness. Some studies have found it to be very effective in reducing the duration, severity, and frequency of hemiplegic attacks. It is generally considered the best treatment available, but this drug is thought by some to be of little benefit to AHC patients. Many patients suffer adverse effects without seeing any improvement. Flunarizine also causes problems because it is difficult for patients to obtain, as it is not readily available in the United States.
The treatment of PRES dependent on its cause. Anti-epileptic medication may also be appropriate.
There is no cure for torsion dystonia. However, there are several medical approaches that can be taken in order to lessen the symptoms of the disease. The treatment must be patient specific, taking into consideration all of the previous and current health complications. The doctor that creates the treatment must have intimate knowledge of the patients’ health and create a treatment plan that covers all of the symptoms focusing on the most chronic areas.
The first step for most with the disorder begins with some form of physical therapy in order for the patient to gain more control over the affected areas. The therapy can help patients with their posture and gain control over the areas of their body that they have the most problems with.
The second step in the treatment process is medication. The medications focus on the chemicals released by neurotransmitters in the nervous system, which control muscle movement. The medications on the market today are anticholinergics, benzodiazepines, baclofen, dopaminergic agents/dopamine-depleting agents, and tetrabenazine. Each medication is started on a low dosage and gradually increased to higher doses as the disease progresses and the side effects are known for the individual.
A more site-specific treatment is the injection of botulinum toxin. It is injected directly into the muscle and works much the same way the oral medications do—by blocking neurotransmitters. The injections are not a treatment for the disease, but are a means to control its symptoms.
A fourth option in the treatment for the symptoms of torsion dystonia is surgery. Surgery is performed only if the patient does not respond to the oral medications or the injections. The type of surgery performed is specific to the type of dystonia that the patient has.
There is no cure for retinitis pigmentosa, but the efficacy and safety of various prospective treatments are currently being evaluated. The efficiency of various supplements, such as Vitamin A, DHA, and Lutein, in delaying disease progression remains an unresolved, yet prospective treatment option. Clinical trials investigating optic prosthetic devices, gene therapy mechanisms, and retinal sheet transplantations are active areas of study in the partial restoration of vision in retinitis pigmentosa patients.
Studies have demonstrated the delay of rod photoreceptor degeneration by the daily intake of 15000 IU (equivalent to 4.5 mg) of vitamin A palmitate; thus, stalling disease progression in some patients. Recent investigations have shown that proper vitamin A supplementation can postpone blindness by up to 10 years (by reducing the 10% loss pa to 8.3% pa) in some patients in certain stages of the disease.
The Argus retinal prosthesis became the first approved treatment for the disease in February 2011, and is currently available in Germany, France, Italy, and the UK. Interim results on 30 patients long term trials were published in 2012. The Argus II retinal implant has also received market approval in the US. The device may help adults with RP who have lost the ability to perceive shapes and movement to be more mobile and to perform day-to-day activities. In June 2013, twelve hospitals in the US announced they would soon accept consultation for patients with RP in preparation for the launch of Argus II later that year. The Alpha-IMS is a subretinal implant involving the surgical implantation of a small image-recording chip beneath the optic fovea. Measures of visual improvements from Alpha-IMS studies require the demonstration of the device's safety before proceeding with clinical trials and granting market approval.
The goal of gene therapy studies is to virally supplement retinal cells expressing mutant genes associated with the retinitis pigmentosa phenotype with healthy forms of the gene; thus, allowing the repair and proper functioning of retinal photoreceptor cells in response to the instructions associated with the inserted healthy gene. Clinical trials investigating the insertion of the healthy RPE65 gene in retinas expressing the LCA2 retinitis pigmentosa phenotype measured modest improvements in vision; however, the degradation of retinal photoreceptors continued at the disease-related rate. Likely, gene therapy may preserve remaining healthy retinal cells while failing to repair the earlier accumulation of damage in already diseased photoreceptor cells. Response to gene therapy would theoretically benefit young patients exhibiting the shortest progression of photoreceptor decline; thus, correlating to a higher possibility of cell rescue via the healthy inserted gene.
In some cases Meige's syndrome can be reversed when it is caused by medication. It has been theorized that it is related to cranio-mandibular orthopedic misalignment, a condition that has been shown to cause a number of other movement disorders (Parkinon's, tourettes, and torticollis). This theory is supported by the fact that the trigeminal nerve is sensory for blink reflex, and becomes hypertonic with craniomandibular dysfunction. Palliative treatments are available, such as botulinum toxin injections.
Treatment for LNS is symptomatic. Gout can be treated with allopurinol to control excessive amounts of uric acid. Kidney stones may be treated with lithotripsy, a technique for breaking up kidney stones using shock waves or laser beams. There is no standard treatment for the neurological symptoms of LNS. Some may be relieved with the drugs carbidopa/levodopa, diazepam, phenobarbital, or haloperidol.
It is essential that the overproduction of uric acid be controlled in order to reduce the risk of nephropathy, nephrolithiasis, and gouty arthritis. The drug allopurinol is utilized to stop the conversion of oxypurines into uric acid, and prevent the development of subsequent arthritic tophi (produced after having chronic gout), kidney stones, and nephropathy, the resulting kidney disease. Allopurinol is taken orally, at a typical dose of 3–20 mg/kg per day. The dose is then adjusted to bring the uric acid level down into the normal range (<3 mg/dL). Most affected individuals can be treated with allopurinol all through life.
No medication is effective in controlling the extrapyramidal motor features of the disease. Spasticity, however, can be reduced by the administration of baclofen or benzodiazepines.
There has previously been no effective method of treatment for the neurobehavioral aspects of the disease. Even children treated from birth with allopurinol develop behavioral and neurologic problems, despite never having had high serum concentrations of uric acid. Self-injurious and other behaviors are best managed by a combination of medical, physical, and behavioral interventions. The self-mutilation is often reduced by using restraints. Sixty percent of individuals have their teeth extracted in order to avoid self-injury, which families have found to be an effective management technique. Because stress increases self-injury, behavioral management through aversive techniques (which would normally reduce self-injury) actually increases self-injury in individuals with LNS. Nearly all affected individuals need restraints to prevent self-injury, and are restrained more than 75% of the time. This is often at their own request, and occasionally involves restraints that would appear to be ineffective, as they do not physically prevent biting. Families report that affected individuals are more at ease when restrained.
The Matheny Medical and Educational Center in Peapack, NJ, has nine Lesch–Nyhan syndrome patients, believed to be the largest concentration of LNS cases in one location, and is recognized as the leading source of information on care issues.
Treatment for LNS patients, according to Gary E. Eddey, MD, medical director, should include: 1) Judicious use of protective devices; 2) Utilization of a behavioral technique commonly referred to as 'selective ignoring' with redirection of activities; and 3) Occasional use of medications.
An article in the August 13, 2007 issue of "The New Yorker" magazine, written by Richard Preston, discusses "deep-brain stimulation" as a possible treatment. It has been performed on a few patients with Lesch–Nyhan syndrome by Dr. Takaomi Taira in Tokyo and by a group in France led by Dr. Philippe Coubes. Some patients experienced a decrease in spastic self-injurious symptoms. The technique was developed for treating people with Parkinson's disease, according to Preston, over 20 years ago. The treatment involves invasive surgery to place wires that carry a continuous electric current into a specific region of the brain.
An encouraging advance in the treatment of the neurobehavioural aspects of LNS was the publication in the October, 2006 issue of "Journal of Inherited Metabolic Disease" of an experimental therapy giving oral S-adenosyl-methionine (SAMe).
This drug is a nucleotide precursor that provides a readily absorbed purine, which is known to be transported across the blood–brain barrier. Administration of SAMe to adult LNS patients was shown to provide improvement in neurobehavioural and other neurological attributes. The drug is available without prescription and has been widely used for depression, but its use for treating LNS should be undertaken only under strict medical supervision, as side effects are known.
SAMe has also been used recently to treat another purine nucleotide disease, "Art's syndrome" (which is a PRPP disorder in common with LNS), with encouraging results.
Thus SAMe may be useful for treating purine nucleotide diseases, which include LNS.
Most pharmacological treatments work poorly, but the best treatment is a low dosage of clonazepam, a muscle relaxant. Patients may also benefit from other benzodiazepines, phenobarbital, and other anticonvulsants such as valproic acid. Affected individuals have reported garlic to be effective for softening the attacks, but no studies have been done on this.
Hemiplegic attacks can be brought on by particular triggers, and management of AHC often centers around avoiding common or known triggers. While triggers vary greatly from person to person, there are also some common ones which are prevalent in many patients. Common triggers include temperature changes, water exposure, bright lights, certain foods, emotional stress, and physical activity. While avoiding triggers may help, it cannot prevent all hemiplegic episodes because many occur without being triggered. Because attacks and other associated symptoms end with sleep, various sedatives can be used to help patients sleep.
The treatment to battle the disease chorea-acanthocytosis is completely symptomatic. For example, Botulinum toxin injections can help to control orolingual dystonia.
Deep Brain Stimulation is a treatment that has varied effects on the people suffering from the symptoms of this disease, for some it has helped in a large way and for other people it did not help whatsoever, it is more effective on specific symptoms of the disease. Patients with chorea-acanthocytosis should undergo a cardiac evaluation every 5 years to look for cardiomyopathy.
The progressive nature of and lack of a definitive cure for retinitis pigmentosa contribute to the inevitably discouraging outlook for patients with this disease. While complete blindness is rare, the patient's visual acuity and visual field will continue to decline as initial rod photoreceptor and later cone photoreceptor degradation proceeds. Possible treatments remain in the research and clinical trial stages; however, treatment studies concerning visual restoration in retinitis pigmentosa prove promising for the future.
Studies indicate that children carrying the disease genotype benefit from presymptomatic counseling in order to prepare for the physical and social implications associated with progressive vision loss. While the psychological prognosis can be slightly alleviated with active counseling the physical implications and progression of the disease depend largely on the age of initial symptom manifestation and the rate of photoreceptor degradation, rather than access to prospective treatments. Corrective visual aids and personalized vision therapy provided by Low Vision Specialists may help patients correct slight disturbances in visual acuity and optimize their remaining visual field. Support groups, vision insurance, and lifestyle therapy are additional useful tools for those managing progressive visual decline.
Most people with the disease need laser repairs to the retina, and about 60 per cent need further surgery.
The treatment of dysautonomia can be difficult; since it is made up of many different symptoms, a combination of drug therapies is often required to manage individual symptomatic complaints. Therefore, if an autoimmune neuropathy is the case, then treatment with immunomodulatory therapies is done, or if diabetes mellitus is the cause, control of blood glucose is important. Treatment can include proton-pump inhibitors and H2 receptor antagonists used for digestive symptoms such as acid reflux.
For the treatment of genitourinary autonomic neuropathy medications may include sildenafil (a guanine monophosphate type-5 phosphodiesterase inhibitor). For the treatment of hyperhidrosis, anticholinergic agents such as trihexyphenidyl or scopolamine can be used, also intracutaneous injection of botulinum toxin type A can be used for management in some cases.
Balloon angioplasty, a procedure referred to as transvascular autonomic modulation, is specifically not approved for the treatment of autonomic dysfunction.
Almost all patients respond positively to antiepileptic (anticonvulsant) drugs. One of the drugs most often mentioned in the literature is carbamazepine, and is the most widely used drug for treating PKD. Other anticonvulsants like valproic acid, phenytoin and clonazepam are common alternatives. Other categories of drugs have also been used, such as dopamine affecting drugs like Levodopa or Tetrabenazine. Individuals with the disorder can also modify their behavior to lessen their attacks without the influence of drug therapy. For example, decreasing stress to avoid precipitants can help patients decrease the number of attacks. In addition, avoiding any sudden movements can also prevent an attack. In order to prevent an attack, some individuals use their auras as a warning, while others purposefully perform slow gestures or movements prior to a triggering movement. Many, if not most, individuals end up growing out of the attacks with age, even without medicinal therapy, but some patients will go back to having attacks after a period of remission. In regards to secondary PKD, treatment of the primary condition can lessen the PKD attacks in those individuals.
As there appeared to be a connection with PED and mutated GLUT1 transporters a possible treatment was looking at changing patients diets. A common treatment for another disorder with a mutated GLUT1 transporter is the ketogenic diet. The diet is a strict 3:1 ratio of fat (3) to protein and carbohydrates (1). This diet is thought to help restore the unbalance created by the decreased amount of glucose in the brain caused by the faulty GLUT1 transporter. This diet was administered to three patients who had been screened and found to have mutation in their SLC2A genes coding for GLUT1 and were experiencing PED symptoms. All three showed benefit from this treatment and a reduction in their PED episodes. They were able to exercise and run long distances for the first time in their lives. No other studies have been performed using this diet as many patients feel the advantages of the diet do not outweigh its disadvantages.
As some cases have noted that patients were able to alleviate or lessen their PED attacks with a sugary snack, another diet that was tried on patients was one rich in carbohydrates with additional frequent carbohydrate-containing snacks. Four patients with reported PED symptoms were put on this diet but no observable improvements were noted and in fact one patient even complained of worsening symptoms.
Additionally it has been observed that levodopa may reduce some symptoms associated with PED. This may demonstrate that PED is a precursor to Parkinson's disease. Acetazolamide was beneficial to some patients, but also worsened symptoms in others. Additionally, a modified version of the Atkin's diet helped to regulate glucose levels in the CSF. Patients with PED associated with insulinomas appeared to have symptoms resolved after consuming sugary drinks. Currently, there are no drugs that are particularly useful in completely curing all symptoms.
Benzodiazepines such as clonazepam improve tremors caused by the myoclonus aspect of this syndrome by binding allosterically to GABA ionotropic receptors, causing an influx of chloride ions that produce an inhibitory effect that can calm myoclonic jerks.
Antiepileptics like valproate must act upon GABA receptors and manipulate ionic conductance to reduce tremors and spasms in myoclonus dystonia. GABA neurons that fire rapidly and affect the motor cortex are blocked by antiepileptics in addition to changes in sodium and calcium concentrations that can excite the neuron. Different antiepileptics vary in sufficiency to control ionic conductance and can also produce seizures or myoclonus symptoms in some patients.
Different medications are tried in an effort to find a combination that is effective for a specific person. Not all people will respond well to the same medications. Medications that have had positive results in some include: diphenhydramine, benzatropine and atropine. anti-Parkinsons agents (such as ropinirole and bromocriptine), and muscle relaxants (such as diazepam).
- Anticholinergics
Medications such as anticholinergics (benztropine), which act as inhibitors of the neurotransmitter acetylcholine, may provide some relief. In the case of an acute dystonic reaction, diphenhydramine is sometimes used (though this drug is well known as an antihistamine, in this context it is being used primarily for its anticholinergic role).. See also Procyclidine.
- Baclofen
A baclofen pump has been used to treat patients of all ages exhibiting muscle spasticity along with dystonia. The pump delivers baclofen via a catheter to the thecal space surrounding the spinal cord. The pump itself is placed in the abdomen. It can be refilled periodically by access through the skin. Baclofen can also be taken in tablet form
- Botulin toxin injection
Botulinum toxin injections into affected muscles have proved quite successful in providing some relief for around 3–6 months, depending on the kind of dystonia. Botox or Dysport injections have the advantage of ready availability (the same form is used for cosmetic surgery) and the effects are not permanent. There is a risk of temporary paralysis of the muscles being injected or the leaking of the toxin into adjacent muscle groups, causing weakness or paralysis in them. The injections have to be repeated, as the effects wear off and around 15% of recipients will develop immunity to the toxin. There is a Type A and a Type B toxin approved for treatment of dystonia; often, those that develop resistance to Type A may be able to use Type B.
- Muscle relaxants
Clonazepam, an anti-seizure medicine, is also sometimes prescribed. However, for most, their effects are limited and side-effects like mental confusion, sedation, mood swings, and short-term memory loss occur.
- Parkinsonian drugs
Dopamine agonists: One type of dystonia, dopamine-responsive dystonia, can be completely treated with regular doses of L-DOPA in a form such as Sinemet (carbidopa/levodopa). Although this does not remove the condition, it does alleviate the symptoms most of the time. (In contrast, dopamine antagonists can sometimes cause dystonia.)
Ketogenic Diet
A Ketogenic diet consisting of 70% fats (focusing on medium chain triglycerides and unsaturated fats), 20% protein and 10% carbohydrates (any sugar) has shown strong promise as a treatment for Dystonia.
There are two lines of treatment for Pisa syndrome. The first line entails discontinuation or reduction in dose of the antipsychotic drug(s). The second line of treatment is an anticholinergic medication. A pharmacological therapy for Pisa syndrome caused by prolonged use of antipsychotic drugs has not been established yet.
There is no known cure for PSP and management is primarily supportive. PSP cases are often split into two subgroups, PSP-Richardson, the classic type, and PSP-Parkinsonism, where a short-term response to levodopa can be obtained. Dyskinesia is an occasional but rare complication of treatment. Amantadine is also sometimes helpful. After a few years the Parkinsonian variant tends to take on Richardson features. Other variants have been described. Botox can be used to treat neck dystonia and blephrospasm, but this can aggravate dysphagia.
Two studies have suggested that rivastigmine may help with cognitive aspects, but the authors of both studies have suggested a larger sampling be used. There is some evidence that the hypnotic zolpidem may improve motor function and eye movements, but only from small-scale studies.
In the past, dopamine blocking agents have been used in the treatment of spasmodic torticollis. Treatment was based on the theory that there is an imbalance of the neurotransmitter dopamine in the basal ganglia. These drugs have fallen out of fashion due to various serious side effects: sedation, parkinsonism, and tardive dyskinesia.
Other oral medications can be used in low doses to treat early stages of spasmodic torticollis. Relief from spasmodic torticollis is higher in those patients who take anticholinergic agents when compared to other oral medications. Many have reported complete management with gabapentin alone or in combination with another drug such as clonazepam. 50% of patients who use anticholinergic agents report relief, 21% of patients report relief from clonazepam, 11% of patients report relief from baclofen, and 13% from other benzodiazepines.
Higher doses of these medications can be used for later stages of spasmodic torticollis; however, the frequency and severity of side effects associated with the medications are usually not tolerated. Side effects include dry mouth, cognitive disturbance, drowsiness, diplopia, glaucoma and urinary retention.