Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment for dysgraphia varies and may include treatment for motor disorders to help control writing movements. The use of occupational therapy can be effective in the school setting, and teachers should be well informed about dysgraphia to aid in carry-over of the occupational therapist's interventions. Treatments may address impaired memory or other neurological problems. Some physicians recommend that individuals with dysgraphia use computers to avoid the problems of handwriting. Dysgraphia can sometimes be partially overcome with appropriate and conscious effort and training. The International Dyslexia Association suggests the use of kinesthetic memory through early training by having the child overlearn how to write letters and to later practice writing with their eyes closed or averted to reinforce the feel of the letters being written. They also suggest teaching the students cursive writing as it has fewer reversible letters and can help lessen spacing problems, at least within words, because cursive letters are generally attached within a word.
Diagnosing dysgraphia can be challenging but can be done at facilities specializing in learning disabilities. It is suggested that those who believe they may have dysgraphia seek a qualified clinician to be tested. Clinicians will have the client self-generate written sentences and paragraphs, and copy age-appropriate text. They will assess the output of writing, as well as observe the client's posture while writing, their grip on the writing instrument, and will ask the client to either tap their finger or turn their wrists repeatedly to assess fine motor skills.
Through the use of compensation strategies, therapy and educational support, dyslexic individuals can learn to read and write. There are techniques and technical aids which help to manage or conceal symptoms of the disorder. Removing stress and anxiety alone can sometimes improve written comprehension. For dyslexia intervention with alphabet-writing systems, the fundamental aim is to increase a child's awareness of correspondences between graphemes (letters) and phonemes (sounds), and to relate these to reading and spelling by teaching how sounds blend into words. It has been found that reinforced collateral training focused on reading and spelling yields longer-lasting gains than oral phonological training alone. Early intervention that is done for children at a young age can be successful in reducing reading failure.
There is some evidence that the use of specially-tailored fonts may help with dyslexia. These fonts, which include Dyslexie, OpenDyslexic, and Lexia Readable, were created based on the idea that many of the letters of the Latin alphabet are visually similar and may, therefore, confuse people with dyslexia. Dyslexie and OpenDyslexic both put emphasis on making each letter more distinctive in order to be more easily identified. The benefits, however, might simply be due to the added spacing between words.
There have been many studies conducted regarding intervention in dyslexia. Among these studies one meta-analysis found that there was functional activation as a result.
There is no evidence demonstrating that the use of music education is effective in improving dyslexic adolescents' reading skills.
There is no cure for the condition. Management is through therapy.
Dyslexic children require special instruction for word analysis and spelling from an early age. While there are fonts that may help people with dyslexia better understand writing, this might simply be due to the added spacing between words. The prognosis, generally speaking, is positive for individuals who are identified in childhood and receive support from friends and family.
There is no cure for Gerstmann syndrome. Treatment is symptomatic and supportive. Occupational and speech therapies may help diminish the dysgraphia and apraxia. In addition, calculators and word processors may help school children cope with the symptoms of the disorder.
The affected individual may not realize that they have a visual problem and may complain of becoming "clumsy" or "muddled" when performing familiar tasks such as setting the table or simple DIY.
Anosognosia, a lack of awareness of the deficit, is common and can cause therapeutic resistance. In some agnosias, such as prosopagnosia, awareness of the deficit is often present; however shame and embarrassment regarding the symptoms can be a barrier in admission of a deficiency. Because agnosias result from brain lesions, no direct treatment for them currently exists, and intervention is aimed at utilization of coping strategies by patients and those around them. Sensory compensation can also develop after one modality is impaired in agnostics
General principles of treatment:
- restitution
- repetitive training of impaired ability
- development of compensatory strategies utilizing retained cognitive functions
Partial remediation is more likely in cases with traumatic/vascular lesions, where more focal damage occurs, than in cases where the deficit arises out of anoxic brain damage, which typically results in more diffuse damage and multiple cognitive impairments. However, even with forms of compensation, some afflicted individuals may no longer be able to fulfill the requirements of their occupation or perform common tasks, such as, eating or navigating. Agnostics are likely to become more dependent on others and to experience significant changes to their lifestyle, which can lead to depression or adjustment disorders.
Interventions include:
- Mastery model:
- Learners work at their own level of mastery.
- Practice
- Gain fundamental skills before moving onto the next level
- Note: this approach is most likely to be used with adult learners or outside the mainstream school system.
- Direct instruction:
- Emphasizes carefully planned lessons for small learning increments
- Scripted lesson plans
- Rapid-paced interaction between teacher and students
- Correcting mistakes immediately
- Achievement-based grouping
- Frequent progress assessments
- Classroom adjustments:
- Special seating assignments
- Alternative or modified assignments
- Modified testing procedures
- Quiet environment
- Special equipment:
- Word processors with spell checkers and dictionaries
- Text-to-speech and speech-to-text programs
- Talking calculators
- Books on tape
- Computer-based activities
- Classroom assistants:
- Note-takers
- Readers
- Proofreaders
- Scribes
- Special education:
- Prescribed hours in a resource room
- Placement in a resource room
- Enrollment in a special school for learning disabled students
- Individual education plan (IEP)
- Educational therapy
Sternberg has argued that early remediation can greatly reduce the number of children meeting diagnostic criteria for learning disabilities. He has also suggested that the focus on learning disabilities and the provision of accommodations in school fails to acknowledge that people have a range of strengths and weaknesses, and places undue emphasis on academic success by insisting that people should receive additional support in this arena but not in music or sports. Other research has pinpointed the use of resource rooms as an important—yet often politicized component of educating students with learning disabilities.
Dysgraphia is a biologically based disorder with genetic and brain bases. More specifically, it is a working memory problem. In dysgraphia, individuals fail to develop normal connections among different brain regions needed for writing. People with dysgraphia have difficulty in automatically remembering and mastering the sequence of motor movements required to write letters or numbers. Dysgraphia is also in part due to underlying problems in orthographic coding, the orthographic loop, and graphmotor output (the movements that result in writing) by one’s hands, fingers and executive functions involved in letter writing. The orthographic loop is when written words are stored in the mind’s eye, connected through sequential finger movement for motor output through the hand with feedback from the eye.
Learning disabilities fall into broad categories based on the four stages of information processing used in learning: input, integration, storage, and output. Many learning disabilities are a compilation of a few types of abnormalities occurring at the same time, as well as with social difficulties and emotional or behavioral disorders.
- Input
- Integration
- Storage
- Output
Nonverbal learning disorder (also known as nonverbal learning disability, NLD, or NVLD) is a learning disorder characterized by verbal strengths as well as visual-spatial, motor, and social skills difficulties. It is sometimes confused with Asperger Syndrome or high IQ. Nonverbal learning disorder has never been included in the American Psychiatric Association's "Diagnostic and Statistical Manual of Mental Disorders" or the World Health Organization's "International Classification of Diseases".
Considered to be neurologically based, nonverbal learning disorder is characterized by verbal strengths as well as visual-spatial, motor, and social skills difficulties. People with this disorder may not at times comprehend nonverbal cues such as facial expression or tone of voice. Challenges with mathematics and handwriting are common.
While various nonverbal impairments were recognized since early studies in child neurology, there is ongoing debate as to whether/or the extent to which existing conceptions of NLD provide a valid diagnostic framework. As originally presented "nonverbal disabilities" (p. 44) or "disorders of nonverbal learning" (p. 272) was a category encompassing non-linguistic learning problems (Johnson and Myklebust, 1967). "Nonverbal learning disabilities" were further discussed by Myklebust in 1975 as representing a subtype of learning disability with a range of presentations involving "mainly visual cognitive processing," social imperception, a gap between higher verbal ability and lower performance IQ, as well as difficulty with handwriting. Later neuropsychologist Byron Rourke sought to develop consistent criteria with a theory and model of brain functioning that would establish NLD as a distinct syndrome (1989).
Questions remain about how best to frame the perceptual, cognitive and motor issues associated with NLD.
The DSM-5 (Diagnostic and Statistical Manual) and ICD-10 (International Classification of Diseases) do not include NLD as a diagnosis.
Assorted diagnoses have been discussed as sharing symptoms with NLD—these conditions include Right hemisphere brain damage and Developmental Right Hemisphere Syndrome, Developmental Coordination Disorder, Social-Emotional Processing Disorder, Asperger syndrome, Gerstmann syndrome and others.
Labels for specific associated issues include visual-spatial deficit, dyscalculia, dysgraphia, as well as dyspraxia.
In their 1967 book "Learning Disabilities; Educational Principles and Practices", Doris J. Johnson and Helmer R. Myklebust characterize how someone with these kinds of disabilities appears in a classroom: "An example is the child who fails to learn the meaning of the actions of others...We categorize this child as having a deficiency in social perception, meaning that he has an inability which precludes acquiring the significance of basic nonverbal aspects of daily living, though his verbal level of intelligence falls within or above the average." (p. 272). In their chapter "Nonverbal Disorders Of Learning" (p. 272-306) are sections titled "Learning Though Pictures," (274) "Gesture," (281) "Nonverbal Motor Learning," (282) "Body Image," (285) "Spatial Orientation," (290) "Right-Left Orientation," (292) "Social Imperception," (295) "Distractibility, Perseveration, and Disinhibition." (298)
In adults, many of the symptoms diminish over time. Although it has been suggested that a similar diminishing of symptoms occurs in children as well, it appears more likely that most do not overcome their deficits, but instead simply learn to adjust.
Developmental coordination disorder (DCD), also known as developmental dyspraxia or simply dyspraxia, is a chronic neurological disorder beginning in childhood. It is also known to affect planning of movements and co-ordination as a result of brain messages not being accurately transmitted to the body. Impairments in skilled motor movements per a child's chronological age which must interfere with activities of daily living. A diagnosis of DCD is then reached only in the absence of other neurological impairments like cerebral palsy, muscular dystrophy, multiple sclerosis or Parkinson's disease. According to CanChild in Canada, this disorder affects 5 to 6 percent of school-aged children; however this disorder does progress towards adulthood, therefore making it a lifelong condition.
Associative visual agnosia is a form of visual agnosia. It is an impairment in recognition or assigning meaning to a stimulus that is accurately perceived and not associated with a generalized deficit in intelligence, memory, language or attention. The disorder appears to be very uncommon in a "pure" or uncomplicated form and is usually accompanied by other complex neuropsychological problems due to the nature of the etiology. Afflicted individuals can accurately distinguish the object, as demonstrated by the ability to draw a picture of it or categorize accurately, yet they are unable to identify the object, its features or its functions.
A placebo-controlled trial of plasmapheresis and IVIG for PANDAS was conducted at the NIH in the late 1990’s, with children randomly assigned (by the NIH pharmacy) to receive plasmapheresis (unblinded) or IVIG/sham IVIG (double blinded). At one month evaluations, placebo infusions produced no improvements in OC or tic symptoms, while 100% of the children receiving IVIG or plasmapheresis improved. The average improvement in OC symptoms was 45% for the group receiving IVIG and nearly 65% for the children receiving plasmapheresis. The results of the trial were sufficiently robust to cause the American Society of Apheresis to include plasmapheresis as a treatment option for PANDAS, as well as for Sydenham chorea.
For treatment guidelines, refer to the PANDAS Physicians Network. PPN’s goal is to help medical professionals understand, diagnose and treat PANS and PANDAS. The network provides research, diagnostic, and treatment tools. PPN Guidelines for Diagnostics and Therapeutics are developed by PPN committees and advisors from the top academic medical institutions in the United States. The members have worked with, treated, and studied the patients and the disorder. PANS and PANDAS are interdisciplinary disorders, so the relevant disciplines are represented on the PPN committees and special advisory council. Some of the disciplines include: Psychiatrists, Pediatric Neurologists, Immunologists, Microbiologists, Rheumatologists, Geneticists, Otolaryngologists, etc.
Multiple complex developmental disorder (MCDD) is a research category, proposed to involve several neurological and psychological symptoms where at least some symptoms are first noticed during early childhood and persist throughout life. It was originally suggested to be a subtype of autistic spectrum disorders (PDD) with co-morbid schizophrenia or another psychotic disorder; however, there is some controversy that not everyone with MCDD meets criteria for both PDD and psychosis. The term "multiplex developmental disorder" was coined by Donald J. Cohen in 1986.
The current diagnostic criteria for MCDD are a matter of debate due to it not being in the DSM-IV or ICD-10. Various websites contain various diagnostic criteria. At least three of the following categories should be present. Co-occurring clusters of symptoms must also not be better explained by being symptoms of another disorder such as experiencing mood swings due to autism, cognitive difficulties due to schizophrenia, and so on. The exact diagnostic criteria for MCDD remain unclear but may be a useful diagnosis for people who do not fall into any specific category. It could also be argued that MCDD is a vague and unhelpful term for these patients.
A neurological disorder is any disorder of the nervous system. Structural, biochemical or electrical abnormalities in the brain, spinal cord or other nerves can result in a range of symptoms. Examples of symptoms include paralysis, muscle weakness, poor coordination, loss of sensation, seizures, confusion, pain and altered levels of consciousness. There are many recognized neurological disorders, some relatively common, but many rare. They may be assessed by neurological examination, and studied and treated within the specialities of neurology and clinical neuropsychology.
Interventions for neurological disorders include preventative measures, lifestyle changes, physiotherapy or other therapy, neurorehabilitation, pain management, medication, or operations performed by neurosurgeons. The World Health Organization estimated in 2006 that neurological disorders and their sequelae (direct consequences) affect as many as one billion people worldwide, and identified health inequalities and social stigma/discrimination as major factors contributing to the associated disability and suffering.
Although the brain and spinal cord are surrounded by tough membranes, enclosed in the bones of the skull and spinal vertebrae, and chemically isolated by the blood–brain barrier, they are very susceptible if compromised. Nerves tend to lie deep under the skin but can still become exposed to damage. Individual neurons, and the neural networks and nerves into which they form, are susceptible to electrochemical and structural disruption. Neuroregeneration may occur in the peripheral nervous system and thus overcome or work around injuries to some extent, but it is thought to be rare in the brain and spinal cord.
The specific causes of neurological problems vary, but can include genetic disorders, congenital abnormalities or disorders, infections, lifestyle or environmental health problems including malnutrition, and brain injury, spinal cord injury or nerve injury. The problem may start in another body system that interacts with the nervous system. For example, cerebrovascular disorders involve brain injury due to problems with the blood vessels (cardiovascular system) supplying the brain; autoimmune disorders involve damage caused by the body's own immune system; lysosomal storage diseases such as Niemann-Pick disease can lead to neurological deterioration. The National Institutes of Health recommend considering the evaluation of an underlying celiac disease in people with unexplained neurological symptoms, particularly peripheral neuropathy or ataxia.
In a substantial minority of cases of neurological symptoms, no neural cause can be identified using current testing procedures, and such "idiopathic" conditions can invite different theories about what is occurring.