Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Many chemical medications have been used for a broad range of neuropathic pain including Dejerine–Roussy syndrome. Symptoms are generally not treatable with ordinary analgesics. Traditional chemicals include opiates and anti-depressants. Newer pharmaceuticals include anti-convulsants and Kampo medicine. Pain treatments are most commonly administered via oral medication or periodic injections. Topical In addition, physical therapy has traditionally been used alongside a medication regimen. More recently, electrical stimulation of the brain and spinal cord and caloric stimulation have been explored as treatments.
The most common treatment plans involve a schedule of physical therapy with a medication regimen. Because the pain is mostly unchanging after development, many patients test different medications and eventually choose the regimen that best adapts to their lifestyle, the most common of which are orally and intravenously administered.
Daily oral muscle physical therapy, or the administration of antidepressants have been reported as effective therapy for occlusal dysesthesia patients. Tooth grinding, and the replacement or removal of all dental work should be avoided in patients with occlusal dysesthesia, despite the frequent requests for further surgery often made by these patients.
Antidepressants are also often prescribed for scalp dysesthesia.
Prakash et al. found that many patients suffering from burning mouth syndrome (BMS), one variant of occlusal dysesthesia, also report painful sensations in other parts of the body. Many of the patients suffering from BMS met the classification of restless leg syndrome (RLS). About half of these patients also had a family history of RLS. These results suggest that some BMS symptoms may be caused by the same pathway as RLS in some patients, indicating that dopaminergic drugs regularly used to treat RLS may be effective in treating BMS as well.
If a cause can be identified for a burning sensation in the mouth, then treatment of this underlying factor is recommended. If symptom persist despite treatment a diagnosis of BMS is confirmed. BMS has been traditionally treated by reassurance and with antidepressants, anxiolytics or anticonvulsants. A 2016 Cochrane review of treatment for burning mouth syndrome concluded that strong evidence of an effective treatment was not available. Other treatments which have been used include atypical antipsychotics, histamine receptor antagonists, and dopamine agonists.
Expensive and invasive, the above treatments are not guaranteed to work, and are not meeting the needs of patients. There is a need for a new, less expensive, less invasive form of treatment, two of which are postulated below.
- Spinal cord stimulation has been studied in the last couple of years. In a long case study, 8 patients were given spinal cord stimulation via insertion of a percutaneous lead at the appropriate level of the cervical or thoracic spine. Between 36 and 149 months after the stimulations, the patients were interviewed. 6 of the 8 had received initial pain relief, and three experienced long-term pain relief. Spinal cord stimulation is cheaper than brain stimulation and less invasive, and is thus a more promising option for pain treatment.
- In 2007, Dr. V. S. Ramachandran and his lab proposed that caloric stimulation might be effective in treating Dejerine–Roussy syndrome. They hypothesized that if cold water was streamed into the ear down the auditory canal, the symptoms associated with Dejerine–Roussy syndrome would be alleviated. Ramachandran stated that he had carried out provisional experiments on two patients and believed that their reactions supported his theory.
The successful treatment of xerostomia is difficult to achieve and often unsatisfactory. This involves finding any correctable cause and removing it if possible, but in many cases it is not possible to correct the xerostomia itself, and treatment is symptomatic, and also focuses on preventing tooth decay through improving oral hygiene. Where the symptom is caused by hyposalivation secondary to underlying chronic disease, xerostomia can be considered permanent or even progressive. The management of salivary gland dysfunction may involve the use of saliva substitutes and/or saliva stimulants:
- Saliva substitutes – these include SalivaMAX, water, artificial salivas (mucin-based, carboxymethylcellulose-based), and other substances (milk, vegetable oil).
- Saliva stimulants – organic acids (ascorbic acid, malic acid), chewing gum, parasympathomimetic drugs (choline esters, e.g. pilocarpine hydrochloride, cholinesterase inhibitors), and other substances (sugar-free mints, nicotinamide).
Saliva substitutes can improve xerostomia, but tend not to improve the other problems associated with salivary gland dysfunction. Parasympathomimitic drugs (saliva stimulants) such as pilocarpine may improve xerostomia symptoms and other problems associated with salivary gland dysfunction, but the evidence for treatment of radiation-induced xerostomia is limited. Both stimulants and substitutes relieve symptoms to some extent. Salivary stimulants are probably only useful in people with some remaining detectable salivary function. A systematic review of the treatment of dry mouth found no strong evidence to suggest that a specific topical therapy is effective. The review reported limited evidence that oxygenated glycerol triester spray was more effective than electrolyte sprays. Sugar free chewing gum increases saliva production but there is no strong evidence that it improves symptoms. There is a suggestion that intraoral devices and integrated mouthcare systems may be effective in reducing symptoms, but there was a lack of strong evidence. A systematic review of the management of radiotherapy induced xerostomia with parasympathomimetic drugs found that there was limited evidence to support the use of pilocarpine in the treatment of radiation-induced salivary gland dysfunction. It was suggested that, barring any contraindications, a trial of the drug be offered in the above group (at a dose of five mg three times per day to minimize side effects). Improvements can take up to twelve weeks. However, pilocarpine is not always successful in improving xerostomia symptoms. The review also concluded that there was little evidence to support the use of other parasympathomimetics in this group.
A 2013 review looking at non-pharmacological interventions reported a lack of evidence to support the effects of electrostimulation devices, or acupuncture, on symptoms of dry mouth.
Dysesthesia (or dysaesthesia) comes from the Greek word "dys", meaning "not-normal" and "aesthesis", which means "sensation" (abnormal sensation). It is defined as an unpleasant, abnormal sense of touch. It often presents as pain but may also present as an inappropriate, but not discomforting, sensation. It is caused by lesions of the nervous system, peripheral or central, and it involves sensations, whether spontaneous or evoked, such as burning, wetness, itching, electric shock, and pins and needles. Dysesthesia can include sensations in any bodily tissue, including most often the mouth, scalp, skin, or legs.
It is sometimes described as feeling like acid under the skin. Burning dysesthesia might accurately reflect an acidotic state in the synapses and perineural space. Some ion channels will open to a low pH, and the acid sensing ion channel has been shown to open at body temperature, in a model of nerve injury pain. Inappropriate, spontaneous firing in pain receptors has also been implicated as a cause of dysesthesia.
Patients suffering from dysesthesia can become incapacitated with pain, despite no apparent damage to the skin or other tissue. Patients suffering from dysesthesia also often suffer from psychological disorders.
BMS is benign (importantly, it is not a symptom of oral cancer), but as a cause of chronic pain which is poorly controlled, it can detriment quality of life, and may become a fixation which cannot be ignored, thus interfering with work and other daily activities. Two thirds of people with BMS have a spontaneous partial recovery six to seven years after the initial onset, but in others the condition is permanent. Recovery is often preceded by a change in the character of the symptom from constant to intermittent. No clinical factors predicting recovery have been noted.
If there is an identifiable cause for the burning sensation (i.e. primary BMS), then psychologic dysfunctions such as anxiety and depression often disappear if the symptom is successfully treated.
TCAs include imipramine, amitriptyline, desipramine, and nortriptyline. They are generally regarded as first or second-line treatment for DPN. Of the TCAs, imipramine has been the best studied. These medications are effective at decreasing painful symptoms but suffer from multiple side effects that are dose-dependent. One notable side effect is cardiac toxicity, which can lead to fatal abnormal heart rhythms. Additional common side effects include dry mouth, difficulty sleeping, and sedation. At low dosages used for neuropathy, toxicity is rare, but if symptoms warrant higher doses, complications are more common. Among the TCAs, amitriptyline is most widely used for this condition, but desipramine and nortriptyline have fewer side effects.
Typical opioid medications, such as oxycodone, appear to be no more effective than placebo. In contrast, low-quality evidence supports a moderate benefit from the use of atypical opioids (e.g., tramadol and tapentadol), which also have SNRI properties. Opioid medications are recommended as second or third-line treatment for DPN.
The underlying disorder must be treated. For example, if a spinal disc herniation in the low back is impinging on the nerve that goes to the leg and causing symptoms of foot drop, then the herniated disc should be treated. If the foot drop is the result of a peripheral nerve injury, a window for recovery of 18 months to 2 years is often advised. If it is apparent that no recovery of nerve function takes place, surgical intervention to repair or graft the nerve can be considered, although results from this type of intervention are mixed.
Non-surgical treatments for spinal stenosis include a suitable exercise program developed by a physical therapist, activity modification (avoiding activities that cause advanced symptoms of spinal stenosis), epidural injections, and anti-inflammatory medications like ibuprofen or aspirin. If necessary, a decompression surgery that is minimally destructive of normal structures may be used to treat spinal stenosis.
Non-surgical treatments for this condition are very similar to the non-surgical methods described above for spinal stenosis. Spinal fusion surgery may be required to treat this condition, with many patients improving their function and experiencing less pain.
Nearly half of all vertebral fractures occur without any significant back pain. If pain medication, progressive activity, or a brace or support does not help with the fracture, two minimally invasive procedures - vertebroplasty or kyphoplasty - may be options.
Ankles can be stabilized by lightweight orthoses, available in molded plastics as well as softer materials that use elastic properties to prevent foot drop. Additionally, shoes can be fitted with traditional spring-loaded braces to prevent foot drop while walking. Regular exercise is usually prescribed.
Functional electrical stimulation (FES) is a technique that uses electrical currents to activate nerves innervating extremities affected by paralysis resulting from spinal cord injury (SCI), head injury, stroke and other neurological disorders. FES is primarily used to restore function in people with disabilities. It is sometimes referred to as Neuromuscular electrical stimulation (NMES)
The latest treatments include stimulation of the peroneal nerve, which lifts the foot when you step. Many stroke and multiple sclerosis patients with foot drop have had success with it. Often, individuals with foot drop prefer to use a compensatory technique like steppage gait or hip hiking as opposed to a brace or splint.
Treatment for some can be as easy as an underside "L" shaped foot-up ankle support (ankle-foot orthoses). Another method uses a cuff placed around the patient's ankle, and a topside spring and hook installed under the shoelaces. The hook connects to the ankle cuff and lifts the shoe up when the patient walks.
Hyperpathia is a clinical symptom of certain neurological disorders wherein nociceptive stimuli evoke exaggerated levels of pain. This should not be confused with allodynia, where normally non-painful stimuli evoke pain.
Hyperpathia describes the neuropathic pain which the pain threshold on one hand is elevated and the other hand is central hyperexcited whenever there is a loss of fibres. Hyperpathia is underlying the peripheral or central deafferentation when the afferent inputs are lost. Hyperpathia only occurs on neuropathic pain patients with the loss of fibres.
The International Association of the Study of Pain’s (IASP) definition of hyperpathia is that: "A painful syndrome characterized by an abnormally painful reaction to a stimulus, "especially a repetitive stimulus, as well as an increased threshold." The definition also complies with a note which is: "It may occur with allodynia, hyperesthesia, hyperalgesia, or dysesthesia. Faulty identification and localization of the stimulus, delay, radiating sensation, and after-sensation may be present, and the pain is often explosive in character. The changes in this note are the specification of allodynia and the inclusion of hyperalgesia explicitly. Previously hyperalgesia was implied, since hyperesthesia was mentioned in the previous note and hyperalgesia is a special case of hyperesthesia".
Besides the frequent choice to leave the cyst in place, surgical treatments remain the primary elective option for treatment of ganglion cysts. The progression of ganglion surgery worldwide is to use an arthroscopic or mini-opening method. Alternatively, a hypodermic needle may be used to drain the fluid from the cyst (via aspiration) and a corticosteroid may be injected after the cyst is empty; however, if the fluid has thickened, owing to the passage of time, this treatment is not always effective.
There is a recurrence rate of approximately 50% following needle drainage (via aspiration) of ganglion cysts.
One common and traditional method of treatment for a ganglion cyst was to strike the lump with a large and heavy book, causing the cyst to rupture and drain into the surrounding tissues. Historically, a Bible was the largest or only book in any given household, and was often employed for this treatment. This led to the former nickname of "Bible bumps" or "Gideon's disease" for these cysts. This treatment risks injuring the patient.
Owing to the self-limiting nature of the disease, treatment is generally not required. In cases where lesions appear to be interfering with the optic nerve, methyl prednisone is prescribed.
Complications of treatment may include joint stiffness and scar formation. Recurrence of the lesion is more common following excision of a volar ganglion cyst in the wrist. Incomplete excision that fails to include the stalk or pedicle also may lead to recurrence, as will failing to execute a layered closure of the incision.
Scalp dysesthesia is a cutaneous condition characterised by pain and burning sensations without objective physical examination findings.
Use of antidepressants in treatment has been described.
Treatment consists of physical rehabilitation programs designed to improve overall function, increase strength and improve balance. The ultimate goal is to increase the patient's degree of independence, thus improving the patient's quality of life. Exercise typically begins with simple movements, gradually transitioning into more complex actions. Various aspects of treatment are assessed based on the individual patient's condition, utilizing many assessment tools:
- Functional Reach Test
- External Perturbation Test – Push, Release
- External Perturbation Test – Pull
- Clinical Sensory Integration Test
- Single Leg Stance Test
- Five Times Sit to Stand Test
Various scales are also utilized
- Brief Ataxia Rating Scale
- Friedreich's Ataxia Impact Scale
- Scale For Assessment and Rating of Ataxia
Aside from physiologic causes of xerostomia, iatrogenic effects of medications are the most common cause. A medication which is known to cause xerostomia may be termed "xerogenic". Over 500 medications produce xerostomia as a side effect (see table). Sixty-three percent of the top 200 most commonly prescribed drugs in the United States are xerogenic. The likelihood of xerostomia increases in relation to the total number of medications taken, whether the individual medications are xerogenic or not. The sensation of dryness usually starts shortly after starting the offending medication or after increasing the dose. Anticholinergic, sympathomimetic, or diuretic drugs are usually responsible.
Vision improves in almost all cases. In rare cases, a patient may suffer permanent visual loss associated with lesions on their optic nerve.
Rarely, coexisting vasculitis may cause neurological complications. These occurrences can start with mild headaches that steadily worsen in pain and onset, and can include attacks of dysesthesia. This type of deterioration happens usually if the lesions involve the fovea.
Scrotodynia is a condition characterized by dysesthesia of the scrotum.
Foot drop is a gait abnormality in which the dropping of the forefoot happens due to weakness, irritation or damage to the common fibular nerve including the sciatic nerve, or paralysis of the muscles in the anterior portion of the lower leg. It is usually a symptom of a greater problem, not a disease in itself. Foot drop is characterized by inability or impaired ability to raise the toes or raise the foot from the ankle (dorsiflexion). Foot drop may be temporary or permanent, depending on the extent of muscle weakness or paralysis and it can occur in one or both feet. In walking, the raised leg is slightly bent at the knee to prevent the foot from dragging along the ground.
Foot drop can be caused by nerve damage alone or by muscle or spinal cord trauma, abnormal anatomy, toxins, or disease. Toxins include organophosphate compounds which have been used as pesticides and as chemical agents in warfare. The poison can lead to further damage to the body such as a neurodegenerative disorder called organophosphorus induced delayed polyneuropathy. This disorder causes loss of function of the motor and sensory neural pathways. In this case, foot drop could be the result of paralysis due to neurological dysfunction. Diseases that can cause foot drop include trauma to the posterolateral neck of fibula, stroke, amyotrophic lateral sclerosis, muscular dystrophy, poliomyelitis, Charcot Marie Tooth disease, multiple sclerosis, cerebral palsy, hereditary spastic paraplegia, Guillain–Barré syndrome, and Friedreich's ataxia. It may also occur as a result of hip replacement surgery or knee ligament reconstruction surgery.
Dysacusis is a hearing impairment characterized by difficulty in processing details of sound due to distortion in frequency or intensity, but not primarily a loss of the ability to perceive sound. The term is sometimes used to describe pain or discomfort due to sound, a condition also known as auditory dysesthesia.
Surgical excision (removal) of the tumor is usually recommended if the tumor is small enough, and if surgery is likely to result in a functionally satisfactory result. Radiation therapy with or without chemotherapy is often used in conjunction with surgery, or as the definitive radical treatment, especially if the tumour is inoperable. Surgeries for oral cancers include:
- Maxillectomy (can be done with or without orbital exenteration)
- Mandibulectomy (removal of the mandible or lower jaw or part of it)
- Glossectomy (tongue removal, can be total, hemi or partial). When glossectomy is performed for smaller tumors (< 4 cm), the adequacy of resection (margin status) is best assessed from the resected specimen itself. The status of the margin (positive/tumor cut through versus negative/clear margin) obtained from the glossectomy specimen appears to be of prognostic value, while the status of the margin sampled from the post-glossectomy defect is not. The method of margin sampling appears to correlate with local recurrence: preference for tumor bed/defect margins may be associated with worse local control.
- Radical neck dissection
- Mohs surgery or CCPDMA
- Combinational, e.g. glossectomy and laryngectomy done together
- Feeding tube to sustain nutrition
Owing to the vital nature of the structures in the head and neck area, surgery for larger cancers is technically demanding. Reconstructive surgery may be required to give an acceptable cosmetic and functional result. Bone grafts and surgical flaps such as the radial forearm flap are used to help rebuild the structures removed during excision of the cancer. An oral prosthesis may also be required. Most oral cancer patients depend on a feeding tube for their hydration and nutrition. Some will also get a port for the chemo to be delivered. Many oral cancer patients are disfigured and suffer from many long term after effects. The after effects often include fatigue, speech problems, trouble maintaining weight, thyroid issues, swallowing difficulties, inability to swallow, memory loss, weakness, dizziness, high frequency hearing loss and sinus damage.
Survival rates for oral cancer depend on the precise site and the stage of the cancer at diagnosis. Overall, 2011 data from the SEER database shows that survival is around 57% at five years when all stages of initial diagnosis, all genders, all ethnicities, all age groups, and all treatment modalities are considered. Survival rates for stage 1 cancers are approximately 90%, hence the emphasis on early detection to increase survival outcome for patients. Similar survival rates are reported from other countries such as Germany.
Following treatment, rehabilitation may be necessary to improve movement, chewing, swallowing, and speech. Speech and language pathologists may be involved at this stage.
Chemotherapy is useful in oral cancers when used in combination with other treatment modalities such as radiation therapy. It is not used alone as a monotherapy. When a cure is unlikely, it can also be used to extend life and can be considered palliative but not curative care. Biological agents such as Cetuximab have recently been shown to be effective in the treatment of squamous cell head and neck cancers, and are likely to have an increasing role in the future management of this condition when used in conjunction with other established treatment modalities.
Treatment of oral cancer will usually be by a multidisciplinary team, with treatment professionals from the realms of radiation, surgery, chemotherapy, nutrition, dentistry, and even psychology all possibly involved with diagnosis, treatment, rehabilitation, and patient care.
Diagnosis consists of a variety of tests, including but not limited to:
- Measurement of orthostatic blood pressure
- Coordination
- rapid, alternating movements
- stroking of heel from along the opposite shin from knee to ankle
- finger-to-nose testing.
- Primary sensory modalities are examined with the following methods, searching for focal sensory loss, graded distal sensory loss, or levels of decreased sensation, hyperesthesia or dysesthesia.
- light touch
- pin-prick
- temperature
- position
- vibration
- Focused gait examination, which examines stationary position and walking abnormalities. Walking generally exposes any faults within the complex neurological communication between systems as weight is shifted from one foot to the other.
The US Preventive Services Task Force (USPSTF) in 2013 stated evidence was insufficient to determine the balance of benefits and harms of screening for oral cancer in adults without symptoms by primary care providers. The American Academy of Family Physicians comes to similar conclusions while the American Cancer Society recommends that adults over 20 years who have periodic health examinations should have the oral cavity examined for cancer. The American Dental Association recommends that providers remain alert for signs of cancer during routine examinations.
There are a variety of screening devices, however, there is no evidence that routine use of these devices in general dental practice is helpful. However, there are compelling reasons to be concerned about the risk of harm this device may cause if routinely used in general practice. Such harms include false positives, unnecessary surgical biopsies and a financial burden on the patient.