Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
All cases of decompression sickness should be treated initially with 100% oxygen until hyperbaric oxygen therapy (100% oxygen delivered in a high-pressure chamber) can be provided. Mild cases of the "bends" and some skin symptoms may disappear during descent from high altitude; however, it is recommended that these cases still be evaluated. Neurological symptoms, pulmonary symptoms, and mottled or marbled skin lesions should be treated with hyperbaric oxygen therapy if seen within 10 to 14 days of development.
Recompression on air was shown to be an effective treatment for minor DCS symptoms by Keays in 1909. Evidence of the effectiveness of recompression therapy utilizing oxygen was first shown by Yarbrough and Behnke, and has since become the standard of care for treatment of DCS. Recompression is normally carried out in a recompression chamber. At a dive site, a riskier alternative is in-water recompression.
Oxygen first aid has been used as an emergency treatment for diving injuries for years. If given within the first four hours of surfacing, it increases the success of recompression therapy as well as decreasing the number of recompression treatments required. Most fully closed-circuit rebreathers can deliver sustained high concentrations of oxygen-rich breathing gas and could be used as a means of supplying oxygen if dedicated equipment is not available.
It is beneficial to give fluids, as this helps reduce dehydration. It is no longer recommended to administer aspirin, unless advised to do so by medical personnel, as analgesics may mask symptoms. People should be made comfortable and placed in the supine position (horizontal), or the recovery position if vomiting occurs. In the past, both the Trendelenburg position and the left lateral decubitus position (Durant's maneuver) have been suggested as beneficial where air emboli are suspected, but are no longer recommended for extended periods, owing to concerns regarding cerebral edema.
The duration of recompression treatment depends on the severity of symptoms, the dive history, the type of recompression therapy used and the patient's response to the treatment. One of the more frequently used treatment schedules is the US Navy Table 6, which provides hyperbaric oxygen therapy with a maximum pressure equivalent to of seawater for a total time under pressure of 288 minutes, of which 240 minutes are on oxygen and the balance are air breaks to minimise the possibility of oxygen toxicity.
A multiplace chamber is the preferred facility for treatment of decompression sickness as it allows direct physical access to the patient by medical personnel, but monoplace chambers are more widely available and should be used for treatment if a multiplace chamber is not available or transportation would cause significant delay in treatment, as the interval between onset of symptoms and recompression is important to the quality of recovery. It may be necessary to modify the optimum treatment schedule to allow use of a monoplace chamber, but this is usually better than delaying treatment. A US Navy treatment table 5 can be safely performed without air breaks if a built-in breathing system is not available. In most cases the patient can be adequately treated in a monoplace chamber at the receiving hospital.
Immediate treatment with 100% oxygen, followed by recompression in a hyperbaric chamber, will in most cases result in no long-term effects. However, permanent long-term injury from DCS is possible. Three-month follow-ups on diving accidents reported to DAN in 1987 showed 14.3% of the 268 divers surveyed had ongoing symptoms of Type II DCS, and 7% from Type I DCS. Long-term follow-ups showed similar results, with 16% having permanent neurological sequelae.
Dysbarism refers to medical conditions resulting from changes in ambient pressure. Various activities are associated with pressure changes. underwater diving is the most frequently cited example, but pressure changes also affect people who work in other pressurized environments (for example, caisson workers), and people who move between different altitudes.
High pressure nervous syndrome is rarely of importance to recreational divers. Breathing any gas at great depths (hundreds of feet) can cause seizures. Interestingly it was discovered because divers were using gas mixtures without nitrogen to be able to go to great depths without experiencing nitrogen narcosis. It turns out that nitrogen prevents HPNS. The answer? Add very small amounts of nitrogen to gas mixes when diving at great depth, small enough to avoid nitrogen narcosis, but sufficient to prevent HPNS.