Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The treatment of pentalogy of Cantrell is directed toward the specific symptoms that are apparent in each individual. Surgical intervention for cardiac, diaphragmatic and other associated defects is necessary. Affected infants will require complex medical care and may require surgical intervention. In most cases, pentalogy of Cantrell is fatal without surgical intervention. However, in some cases, the defects are so severe that the individual dies regardless of the medical or surgical interventions received.
The specific treatment strategy will vary from one infant to another based upon various factors, including the size and type of abdominal wall defect, the specific cardiac anomalies that are present, and the particular type of ectopia cordis. Surgical procedures that may be required shortly after birth include repair of an omphalocele. At this time, physicians may also attempt to repair certain other defects including defects of the sternum, diaphragm and the pericardium.
In severe cases, some physicians advocate for a staged repair of the defects associated with pentalogy of Cantrell. The initial operation immediately after birth provides separation of the peritoneal and pericardial cavities, coverage of the midline defect and repair of the omphalocele. After appropriate growth of the thoracic cavity and lungs, the second stage consists of the repair of cardiac defects and return of the heart to the chest. Eventually, usually by age 2 or 3, reconstruction of the lower sternum or epigastrium may be necessary.
Other treatment of pentalogy of Cantrell is symptomatic and supportive.
Treatments for the condition vary depending on its severity. The most immediate and effective treatment in the majority of cases is a surgical repair to close the fistula/s and reconnect the two ends of the esophagus to each other. Although this is usually done through an incision between the ribs on right side of the baby, a technique using three small incisions (thoracoscopy) is being used at some centers. In a minority of cases, the gap between upper and lower esophageal segments may be too long to bridge. In some of these so-called long gap cases, though, an advanced surgical treatment developed by John Foker, MD, may be utilized to elongate and then join together the short esophageal segments. Using the Foker technique, surgeons place traction sutures in the tiny esophageal ends and increase the tension on these sutures daily until the ends are close enough to be sewn together. The result is a normally functioning esophagus, virtually indistinguishable from one congenitally well formed. Unfortunately, the results have been somewhat difficult to replicate by other surgeons and the need for multiple operations has tempered enthusiasm for this approach.
The optimal treatment in cases of long gap esophageal atresia remains controversial. Traditional surgical approaches include gastrostomy followed by gastric pull-up, colonic transposition and jejunum transposition. Gastric pull-up has been the preferred approach at many specialized centers, including Great Ormond Street (London) and Mott Children's Hospital (Ann Arbor). Gastrostomy, or G-tube, allows for tube feedings into the stomach through the abdominal wall. Often a cervical esophagostomy will also be done, to allow the saliva which is swallowed to drain out a hole in the neck. Months or years later, the esophagus may be repaired, sometimes by using a segment of bowel brought up into the chest, interposing between the upper and lower segments of esophagus.
Post operative complications sometimes arise, including a leak at the site of closure of the esophagus. Sometimes a stricture, or tight spot, will develop in the esophagus, making it difficult to swallow. This can usually be dilated using medical instruments. In later life, most children with this disorder will have some trouble with either swallowing or heartburn or both. Esophageal dismotility occurs in 75-100% of patients.
Tracheomalacia—a softening of the trachea, usually above the carina (carina of trachea), but sometimes extensive in the lower bronchial tree as well—is another possible serious complication. Even after esophageal repair (anastomosis) the relative flaccidity of former proximal pouch (blind pouch, above) along with esophageal dysmotility can cause fluid buildup during feeding. Owing to proximity, pouch ballooning can cause tracheal occlusion. Severe hypoxia ("dying spells") follows and medical intervention can often be required.
A variety of treatments for tracheomalacia associated with esophageal atresia are available. If not severe, the condition can be managed expectantly since the trachea will usually stiffen as the infant matures into the first year of life. When only the trachea above the carina is compromised, one of the "simplest" interventions is aortopexy wherein the aortic loop is attached to the rear of the sternum, thereby mechanically relieving pressure from the softened trachea. An even simpler intervention is stenting. However, epithelial cell proliferation and potential incorporation of the stent into the trachea can make subsequent removal dangerous.
Early treatment includes removing fluids from the stomach via a nasogastric tube, and providing fluids intravenously. The definitive treatment for duodenal atresia is surgery (duodenoduodenostomy), which may be performed openly or laparoscopically. The surgery is not urgent. The initial repair has a 5 percent morbidity and mortality rate.
The treatment of pulmonary atresia consists of: an IV medication called prostaglandin E1, which is used for treatment of pulmonary atresia, as it stops the ductus arteriosus from closing, allowing mixing of the pulmonary and systemic circulations, but prostaglandin E1 can be dangerous as it can cause apnea. Another example of preliminary treatment is heart catheterization to evaluate the defect or defects of the heart; this procedure is much more invasive. Ultimately, however, the individual will need to have a series of surgeries to improve the blood flow permanently. The first surgery will likely be performed shortly after birth. A shunt can be created between the aorta and the pulmonary artery to help increase blood flow to the lungs. As the child grows, so does the heart and the shunt may need to be revised in order to meet the body's requirements.
The type of surgery recommended depends on the size of the right ventricle and the pulmonary artery, if the right ventricle is small and unable to act as a pump, the surgery performed would be the Fontan procedure. In this three-stage procedure, the right atrium is disconnected from the pulmonary circulation. The systemic venous return goes directly to the lungs, by-passing the heart.Very young children with elevated pulmonary vascular resistance may not able to undergo the Fontan procedure. Cardiac catheterization may be done to determine the resistance before going ahead with the surgery.
Sometimes CHD improves without treatment. Other defects are so small that they do not require any treatment. Most of the time CHD is serious and requires surgery and/or medications. Medications include diuretics, which aid the body in eliminating water, salts, and digoxin for strengthening the contraction of the heart. This slows the heartbeat and removes some fluid from tissues. Some defects require surgical procedures to restore circulation back to normal and in some cases, multiple surgeries are needed.
Interventional cardiology now offers patients minimally invasive alternatives to surgery for some patients. The Melody Transcatheter Pulmonary Valve (TPV), approved in Europe in 2006 and in the U.S. in 2010 under a Humanitarian Device Exemption (HDE), is designed to treat congenital heart disease patients with a dysfunctional conduit in their right ventricular outflow tract (RVOT). The RVOT is the connection between the heart and lungs; once blood reaches the lungs, it is enriched with oxygen before being pumped to the rest of the body. Transcatheter pulmonary valve technology provides a less-invasive means to extend the life of a failed RVOT conduit and is designed to allow physicians to deliver a replacement pulmonary valve via a catheter through the patient’s blood vessels.
Most patients require lifelong specialized cardiac care, first with a pediatric cardiologist and later with an adult congenital cardiologist. There are more than 1.8 million adults living with congenital heart defects.
Fetal and neonatal intestinal atresia are treated using laparotomy after birth. If the area affected is small, the surgeon may be able to remove the damaged portion and join the intestine back together. In instances where the narrowing is longer, or the area is damaged and cannot be used for period of time, a temporary stoma may be placed.
Each of the symptoms of situs ambiguous must be managed with appropriate treatment dependent upon the organ system involved. Intestinal malrotation is treated surgically using the Ladd procedure. This procedure widens a fold in the peritoneum so that the intestines can be placed in non-rotated formation. Unfortunately, it is not possible to return the bowel to a normal morphology However, 89% of patients that undergo the Ladd surgery experience a complete resolution of symptoms.
Following cholangiogram, a Kasai Procedure is usually performed in cases of biliary atresia. In this surgery, a Y-shaped shunt is used to passage bile from the liver directly to the intestine. If this is unsuccessful, liver transplantation can be considered based on the overall health of the patient. Fortunately, the Kasai Procedure is successful in approximately 80% of patients. Following the operation, patients are advised to take fat-soluble vitamins, choleretics, and anti-inflammatory medications.
Functionally asplenic patients have an elevated lifetime risk of septicemia, as they have no functional spleen for fighting infection. For this reason, asplenic patients are under constant observation for any signs of fever or infection. In the case of infection, patients are placed on controlled empiric antibiotic therapy to avoid development of antibiotic resistance. This therapy battles infection by both gram-positive and gram-negative bacteria.
Right-atrial and left-atrial isomerism and associated pulmonary issues are treated in a series of steps based on the severity of symptoms. Isomeric patients are first treated by inserting a shunt that will move incoming blood through the pulmonary circuit. The Fontan procedure routes blood through the patient's single ventricle, to the lungs, and into systemic circulation. This process is favorable in patients aged 2 – 5 years old. Unfortunately, 20-30% of patients will require a heart transplant. Left-atrial isomeric patients have less severe complications, as they typically have 2 functional ventricles. In this case, they can undergo biventricular repair to form 2 separate ventricles and functional associated valves.
Prognosis for patients with situs ambiguous is quite varied, considering the spectrum of clinical complications. Infants who experience severe cyanosis at birth die within hours of delivery if medical intervention is not immediate. Alternatively, longevity of neonates with mild cardiac lesions is unaffected. Ten percent of patients born with right atrial isomerism die by the age of 5 without intervention. Fortunately, improvements in therapies has increased the 5-year survival to 30-74% for right atrial isomeric patients and 65-84% for left atrial isomeric patients based on the cause of their disease.
The Blalock-Thomas-Taussig procedure, initially the only surgical treatment available for tetralogy of Fallot, was palliative but not curative. The first total repair of tetralogy of Fallot was done by a team led by C. Walton Lillehei at the University of Minnesota in 1954 on an 11-year-old boy. Total repair on infants has had success from 1981, with research indicating that it has a comparatively low mortality rate.
Total repair of tetralogy of Fallot initially carried a high mortality risk, but this risk has gone down steadily over the years. Surgery is now often carried out in infants one year of age or younger with less than 5% perioperative mortality. The open-heart surgery is designed to relieve the right ventricular outflow tract stenosis by careful resection of muscle and to repair the VSD with a Gore-Tex patch or a homograft.> Additional reparative or reconstructive surgery may be done on patients as required by their particular cardiac anatomy.
Tet spells may be treated with beta-blockers such as propranolol, but acute episodes require rapid intervention with morphine or intranasal fentanyl to reduce ventilatory drive, a vasopressor such as phenylephrine, or norepinephrine to increase systemic vascular resistance, and IV fluids for volume expansion.
Oxygen (100%) may be effective in treating spells because it is a potent pulmonary vasodilator and systemic vasoconstrictor. This allows more blood flow to the lungs by decreasing shunting of deoxygenated blood from the right to left ventricle through the VSD. There are also simple procedures such as squatting and the knee chest position which increase systemic vascular resistance and decrease right-to-left shunting of deoxygenated blood into the systemic circulation.
After the surgery, some patients require intubation and mechanical ventilation for several days to allow adequate tracheal toilet, but most patients can have the tubes removed soon after the surgery. The obstructive airway symptoms may be worse in the first postoperative weeks. Only a few patients have immediate relief of stridor, but many obtain immediate relief of problems with swallowing (dysphagia). After extubation, it might be necessary to maintain positive airway pressure by appropriate flows of a humidified oxygen/air mixture.
The procedure is performed in general anesthesia. It is useful to place pulse oximeter probes on "both hands" and "one foot" so that test occlusion of one arch or its branches will allow confirmation of the anatomy. In addition blood pressure cuffs should also be placed on one leg and both arms to confirm the absence of a pressure gradient when the intended point of division of the lesser arch is temporarily occluded with forceps.
Temporary alleviation can be achieved by inserting an oral airway into the mouth. However, the only definitive treatment is surgery to correct the defect by perforating the atresia to create a nasopharyngeal airway. If the blockage is caused by bone, this is drilled through and stent inserted. The patient has to have this sucked out by an air vacuum machine . And in later life as a teenager or in early twenties the hole will have to be re-drilled larger.
A stent may be inserted to keep the newly formed airway patent or repeated dilatation may be performed.
Treatment is surgical and involves closure of the atrial and ventricular septal defects and restoration of a competent left AV valve as far as is possible. Open surgical procedures require a heart-lung machine and are done with a median sternotomy. Surgical mortality for uncomplicated ostium primum defects in experienced centers is 2%; for uncomplicated cases of complete atrioventricular canal, 4% or less. Certain complications such as tetralogy of Fallot or highly unbalanced flow across the common AV valve can increase risk significantly.
Infants born with AVSD are generally in sufficient health to not require immediate corrective surgery. If surgery is not required immediately after birth, the newborn will be closely monitored for the next several months, and the operation held-off until the first signs of lung distress or heart failure. This gives the infant time to grow, increasing the size of, and thereby the ease of operation on, the heart, as well as the ease of recovery. Infants will generally require surgery within three to six months, however, they may be able to go up to two years before the operation becomes necessary, depending on the severity of the defect.
A method for repairing long-gap esophageal atresia using magnets has been developed, that does not require replacing the missing section with grafts of the intestine or other body parts. Using electromagnetic force to attract the upper and lower ends of the esophagus together was first tried in the 1970s by using steel pellets attracted to each other by applying external electromagnets to the patient. In the 2000s a further refinement was developed by Mario Zaritzky's group and others. The newer method uses permanent magnets and a balloon.
1. The magnets are inserted into the upper pouch via the baby's mouth or nose, and the lower via the gastrotomy feeding tube hole (which would have had to be made anyway to feed the baby, therefore not requiring any additional surgery).
2. The distance between the magnets is controlled by a balloon in the upper pouch, between the end of the pouch and the magnet. This also controls the force between the magnets so it is not strong enough to cause damage.
3. After the ends of the esophagus have stretched enough to touch, the upper magnet is replaced by one without a balloon and the stronger magnetic attraction causes the ends to fuse (anastomosis).
In April 2015 Annalise Dapo became the first patient in the United States to have their esophageal atresia corrected using magnets.
Treatment is possible and these are the steps taken:
Resuscitate the patient with fluids to stabilize them before surgically
- correcting the malrotation (counterclockwise rotation of the bowel),
- cutting the fibrous bands over the duodenum,
- widening the mesenteric pedicle by separation of the duodenum and cecum.
With this condition the appendix is often on the wrong side of the body and therefore removed as a precautionary measure during the surgical procedure.
One surgical technique is known as "Ladd's procedure", after Dr. William Ladd. Long term research on the Ladd procedure shows that even after the procedure, patients are susceptible to have complaints and might need further surgery.
SMA syndrome can present in acute, acquired form (e.g. abruptly emerging within an inpatient stay following scoliosis surgery) as well as chronic form (i.e. developing throughout the course of a lifetime and advancing due to environmental triggers, life changes, or other illnesses). According to a number of recent sources, at least 70% of cases can typically be treated with medical treatment, while the rest require surgical treatment.
Medical treatment is attempted first in many cases. In some cases, emergency surgery is necessary upon presentation. A six-week trial of medical treatment is recommended in pediatric cases. The goal of medical treatment for SMA Syndrome is resolution of underlying conditions and weight gain. Medical treatment may involve nasogastric tube placement for duodenal and gastric decompression, mobilization into the prone or left lateral decubitus position, the reversal or removal of the precipitating factor with proper nutrition and replacement of fluid and electrolytes, either by surgically inserted jejunal feeding tube, nasogastric intubation, or peripherally inserted central catheter (PICC line) administering total parenteral nutrition (TPN). Pro-motility agents such as metoclopramide may also be beneficial. Symptoms may improve after restoration of weight, except when reversed peristalsis persists, or if regained fat refuses to accumulate within the mesenteric angle. Most patients seem to benefit from nutritional support with hyperalimentation irrespective of disease history.
If medical treatment fails, or is not feasible due to severe illness, surgical intervention is required. The most common operation for SMA syndrome, duodenojejunostomy, was first proposed in 1907 by Bloodgood. Performed as either an open surgery or laparoscopically, duodenojejunostomy involves the creation of an anastomosis between the duodenum and the jejunum, bypassing the compression caused by the AA and the SMA. Less common surgical treatments for SMA syndrome include Roux-en-Y duodenojejunostomy, gastrojejunostomy, anterior transposition of the third portion of the duodenum, intestinal derotation, division of the ligament of Treitz (Strong's operation), and transposition of the SMA. Both transposition of the SMA and lysis of the duodenal suspensory muscle have the advantage that they do not involve the creation of an intestinal anastomosis.
The possible persistence of symptoms after surgical bypass can be traced to the remaining prominence of reversed peristalsis in contrast to direct peristalsis, although the precipitating factor (the duodenal compression) has been bypassed or relieved. Reversed peristalsis has been shown to respond to duodenal circular drainage—a complex and invasive open surgical procedure originally implemented and performed in China.
In some cases, SMA Syndrome may occur alongside a serious, life-threatening condition such as cancer or AIDS. Even in these cases, though, treatment of the SMA Syndrome can lead to a reduction in symptoms and an increased quality of life.
The prognosis for pulmonary atresia varies for every child, if the condition is left uncorrected it may be fatal, but the prognosis has greatly improved over the years for those with pulmonary atresia. Some factors that affect how well the child does include how well the heart is beating, and the condition of the blood vessels that supply the heart. Most cases of pulmonary atresia can be helped with surgery, if the patient's right ventricle is exceptionally small, many surgeries will be needed in order to help stimulate normal circulation of blood to the heart.If uncorrected, babies with this type of congenital heart disease may only survive for the first few days of life. Many children with pulmonary atresia will go on to lead normal lives, though complications such as endocarditis, stroke and seizures are possible.
It is surgically corrected, with resection of any fistula and anastomosis of any discontinuous segments.
Several medications are used to improve bile flow, including ursodiol (Actigall).These medications differ in their rates of success.
Certain drugs may be used to reduce itching (pruritus): hydroxyzine (Atarax), cholestyramine, rifampicin, phenobarbital, and naltrexone. Similar to the medications which improve bile flow, the anti-itching drugs vary in their success rate.
Many patients with Alagille syndrome will also benefit from a high dose of a multivitamin such as ADEK (continuing high levels of vitamins A, D, E, and K), as the reduced bile flow makes it difficult to absorb and utilize these vitamins.
Early treatment is possible once the disease is detected. Once the classical symptoms appear, the best way to eliminate the dangers of Alagille syndrome is a full liver transplant. Most of the short-term treatments available are aimed at improving the functioning of the heart and reducing the effects of impaired liver, kidney, and spleen function.
Most (>95%) infants with biliary atresia will undergo an operation designed to retain and salvage the native liver, restore bile flow and reduce the level of jaundice. This is known as the Kasai procedure (after Morio Kasai, the Japanese surgeon who first developed the technique) or hepatoportoenterostomy. Although the procedure is not thought of as curative, it may relieve jaundice, and stop liver fibrosis allowing normal growth and development. Published series from Japan, North America and the UK show that bilirubin levels will fall to normal values in about 50-55% of infants allowing 40-50% to retain their own liver to reach the age of 5 and 10 years (and beyond). Liver transplantation is an option for those children whose liver function and symptoms fail to respond to a Kasai operation.
Recent large-scale studies by Davenport et al. ("Annals of Surgery", 2008) show that the age of the patient is not an absolute clinical factor affecting prognosis. The influence of age differs according to the disease etiology—i.e., whether biliary atresia is isolated, cystic (CBA), or accompanied by splenic malformation (BASM).
It is widely accepted that corticosteroid treatment after a Kasai operation, with or without choleretics and antibiotics, has a beneficial effect on postoperative bile flow and can clear jaundice, but the dosing and duration of the ideal steroid protocol are controversial. Furthermore, it has been observed in many retrospective longitudinal studies that corticosteroid treatment does not prolong survival of the native liver or transplant-free survival. Davenport et al. also showed ("Hepatology" 2007) that short-term, low-dose steroid therapy following a Kasai operation had no effect on the mid- or long-term prognosis of biliary atresia patients.
When there are holes in the septum that divide the four chambers of the heart the oxygen-rich blood and oxygen-poor blood mix this creates more stress on the heart to pump blood to where oxygen is needed. As a result, you get enlargement of the heart, heart failure (being unable to adequately supply body with needed oxygen, pulmonary hypertension, and pneumonia.
The development of pulmonary hypertension is very serious. And this because the left ventricle is weakened due to its overuse. When this happens, the pressure backs up into the pulmonary veins and the lungs. This type of damage is irreversible which is why immediate treatment is recommended after diagnosis.
Due to the rarity and rapid postpartum mortality of ectopia cordis, limited treatment options have been developed. Only one successful surgery has been performed as of now, and the mortality rate remains high.
Neonates with TEF or esophageal atresia are unable to feed properly. Once diagnosed, prompt surgery is required to allow the food intake. Some children do experience problems following TEF surgery; they can develop dysphagia and thoracic problems. Children with TEF can also be born with other abnormalities, most commonly those described in VACTERL association - a group of anomalies which often occur together, including heart, kidney and limb deformities. 6% of babies with TEF also have a laryngeal cleft.
The prognosis of ectopia cordis depends on classification according to three factors:
1. Location of the defect
- Cervical
- Thoracic
- Thoracoabdominal
- Abdominal
2. Extent of the cardiac displacement
3. Presence or absence of intracardiac defects
Some studies have suggested a better prognosis with surgery in cases of thoracoabdominal ectopia cordis or less severe pentalogy of Cantrell. In general, the prognosis for ectopia cordis is poor—most cases result in death shortly after birth due to infection, hypoxemia, or cardiac failure.