Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is no cure available for Weaver syndrome. However, with multidisciplinary management such as neurological, pediatric, orthopedic, and psychomotor care and genetic counseling, symptoms can be managed. Surgery may be used to correct any skeletal issues. Physical and occupational therapy are considered an option to help with muscle tone. Also, speech therapy is often recommended for speech related problems.
Treatment is symptomatic. There is no standard course of treatment for Sotos syndrome.
With appropriate treatment and management, patients with Weaver syndrome appear to do well, both physically and intellectually, throughout their life and have a normal lifespan. Their adult height is normal as well.
The only treatment for MWS is only symptomatic, with multidisciplinary management
Sotos syndrome is not a life-threatening disorder and patients may have a normal life expectancy. Developmental delays may improve in the school-age years; however, coordination problems may persist into adulthood, along with any learning disabilities and/or other physical or mental issues.
Patients must have early consultation with craniofacial and orthopaedic surgeons, when craniofacial, clubfoot, or hand correction is indicated to improve function or aesthetics. Operative measures should be pursued cautiously, with avoidance of radical measures and careful consideration of the abnormal muscle physiology in Freeman–Sheldon syndrome. Unfortunately, many surgical procedures have suboptimal outcomes, secondary to the myopathy of the syndrome.
When operative measures are to be undertaken, they should be planned for as early in life as is feasible, in consideration of the tendency for fragile health. Early interventions hold the possibility to minimise developmental delays and negate the necessity of relearning basic functions.
Due to the abnormal muscle physiology in Freeman–Sheldon syndrome, therapeutic measures may have unfavourable outcomes. Difficult endotracheal intubations and vein access complicate operative decisions in many DA2A patients, and malignant hyperthermia (MH) may affect individuals with FSS, as well. Cruickshanks et al. (1999) reports uneventful use of non-MH-triggering agents. Reports have been published about spina bifida occulta in anaesthesia management and cervical kyphoscoliosis in intubations.
If a contracture is less than 30 degrees, it may not interfere with normal functioning. The common treatment is splinting and occupational therapy. Surgery is the last option for most cases as the result may not be satisfactory.
Patients and their parents must receive psychotherapy, which should include marriage counselling. Mitigation of lasting psychological problems, including depression secondary to chronic illness and posttraumatic stress disorder (PTSD), can be very successfully addressed with early interventions. This care may come from the family physician, or other attending physician, whoever is more appropriate; specialist care is generally not required. Lewis and Vitulano (2003) note several studies suggesting predisposal for psychopathology in paediatric patients with chronic illness. Esch (2002) advocates preventive psychiatry supports to facilitate balance of positive and negative stressors associated with chronic physical pathology. Patients with FSS should have pre-emptive and ongoing mixed cognitive therapy-psychodynamic psychotherapy for patients with FSS and cognitive-behavioural therapy (CBT), if begun after onset of obvious pathology.
Adler (1995) cautioned the failure of modern medicine to implement the biopsychosocial model, which incorporates all aspects of a patient’s experience in a scientific approach into the clinical picture, often results in chronically-ill patients deferring to non-traditional and alternative forms of therapy, seeking to be understood as a whole, not a part, which may be problematic among patients with FSS.
Furthermore, neuropsychiatry, physiological, and imaging studies have shown PTSD and depression to be physical syndromes, in many respects, as they are psychiatric ones in demonstrating limbic system physiological and anatomy disturbances. Attendant PTSD hyperarousal symptoms, which additionally increase physiological stress, may play a part in leading to frequent MH-like hyperpyrexia and speculate on its influence on underlying myopathology of FSS in other ways. PTSD may also bring about developmental delays or developmental stagnation, especially in paediatric patients.
With psychodynamic psychotherapy, psychopharmacotherapy may need to be considered. Electroconvulsive therapy (ECT) is advised against, in light of abnormal myophysiology, with predisposal to MH.
Until more molecular and clinical studies are performed there will be no way to prevent the disease. Treatments are directed towards alleviating the symptoms. To treat the disease it is crucial to diagnose it properly. Orthopedic therapy and fracture management are necessary to reduce the severity of symptoms. Bisphosphonate drugs are also an effective treatment.
Pregnant mothers are advised to take folic acid supplements to reduce risk of iniencephaly by up to 70%. Pregnant mothers are also advised not to take antiepileptic drugs, diuretics, antihistamines, and sulfa drugs, all of which have been associated with increased risk for neural tube defects.
Overall prognosis for children with amyoplasia is good. Intensive therapies throughout developing years include physical therapy, occupational therapy and multiple orthopedic procedures. Most children require therapy for years, but almost 2/3 are eventually able to walk, with or without braces, and attend school.
The treatment of arthrogryposis includes occupational therapy, physical therapy, splinting and surgery. The primary long-term goals of these treatments are increasing joint mobility, muscle strength and the development of adaptive use patterns that allow for walking and independence with activities of daily living. Since arthrogryposis includes many different types, the treatment varies between patients depending on the symptoms.
Only a few good articles exist in which a surgical technique that is used to treat arthrogryposis is described. These surgeries are explained below.
People with AMC look their worst at birth. AMC is considered non-progressive, so with proper medical treatment, things can improve. The joint contractures that are present will not get worse than they are at the time of birth. There is no way to completely resolve or cure AMC. But with proper treatment, most children make significant improvements in their range of motion and ability to move their limbs which enables them to do activities of daily life, and live relatively normal lives. Therapeutic interventions that are cornerstone in the treatment of AMC include: stretching and range of motion exercises, physical, occupational, and speech therapy, splinting and serial casting. Surgical intervention may also improve joint mobility and function. Other positive prognostic factors for independent walking were active hips and knees, hip flexion contractures of less than 20 degrees and knee flexion contractures less than 15 degrees without severe scoliosis.
Surgery may be necessary to address the congenital deformities frequently occurring in conjunction with arthrogryposis. Surgery on feet, knees, hips, elbows and wrists may also be useful if more range of motion is needed after therapy has achieved maximum results. In some cases, tendon transfers can improve function. Congenital deformities of the feet, hips and spine may require surgical correction at or about one year of age.
Surgical correction is recommended when a constriction ring results in a limb contour deformity, with or without lymphedema.
At the beginning of the surgery a tourniquet will be applied to the limb. A tourniquet compresses and control the arterial and venous circulation for about 2 hours. The constriction band must be dissected very carefully to avoid damaging the underlying neurovasculature. When the constriction band is excised, there will be a direct closure. This allows the fatty tissue to naturally reposition itself under the skin.
“With complete circumferential constriction bands, it is recommended that a two-stage correction approach be used. At the first operation, one-half of the circumference is excised and the other one-half can be excised after three to six months. This will avoid any problems to the distal circulation in the limb, which may already be compromised. Lymphedema, when present, will significantly improve within a few weeks of the first surgery.”
For the direct closure of the defect after dissecting a constriction band there are two different techniques:
1. Triangular flaps; For this technique the circumference between the two borders must be measured. Depending on the difference the number of triangular flaps can be decided. With a triangular flap you can create more skin.
2. Z/W-plasty; “Z-plasty is a plastic surgery technique that is used to improve the functional and cosmetic appearance of scars. It can elongate a contracted scar or rotate the scar tension line. The middle line of the Z-shaped incision (the central element) is made along the line of greatest tension or contraction, and triangular flaps are raised on opposite sides of the two ends and then transposed.”
In rare cases, if diagnosed in utero, fetal surgery may be considered to save a limb that is in danger of amputation or other deformity. This operation has been successfully performed on fetuses as young as 22 weeks. The Melbourne's Monash Medical Centre in Australia, as well as multiple facilities in the United States of America, have performed successful amniotic band release surgery.
Treatment of all categories of congenital clasped thumbs should start with either serial plaster casting or wearing a static or dynamic splint for a period of six months, while massaging the hand. Extension by splinting shows reduction of the flexion contracture. To gain optimal results, it is important to start this treatment before the age of six months. The result of this therapy is better in less severe deformities. In most uncomplicated cases, a satisfactory result can be gained when splint therapy starts before the age of six months. Splinting should be tried for at least three months and possibly for as long as six months or longer. If the result of splint therapy stagnates, surgery treatment is indicated.
Treatment of congenital clasped thumb includes two types of therapy: conservative and surgical.
There have been 30 cases of Marden-Walker Syndrome reported since 1966. The first case of this was in 1966 a female infant was diagnosed with blepharophimosis, joint contractures, arachnodactyly and growth development delay. She ended up passing at 3 months due to pneumonia.
There is no known cure to DSMA1, and care is primarily supportive. Patients require respiratory support which may include non-invasive ventilation or tracheal intubation. The child may also undergo additional immunisations and offered antibiotics to prevent respiratory infections. Maintaining a healthy weight is also important. Patients are at risk of undernutrition and weight loss because of the increased energy spent for breathing. Physical and occupational therapy for the child can be very effective in maintaining muscle strength.
There is no published practice standard for the care in DSMA1, even though the Spinal Muscular Atrophy Standard of Care Committee has been trying to come to a consensus on the care standards for DSMA1 patients. The discrepancies in the practitioners’ knowledge, family resources, and differences in patient’s culture and/or residency have played a part in the outcome of the patient.
Since newborns with iniencephaly so rarely survive past childbirth, a standard treatment does not exist.
Physical therapy is the predominant treatment of symptoms. Orthopedic shoes and foot surgery can be used to manage foot problems.
Because neither of the two thumb components is normal, a decision should be taken on combining which elements to create the best possible composite digit. Instead of amputating the most hypoplastic thumb, preservation of skin, nail, collateral ligaments and tendons is needed to augment the residual thumb. Surgery is recommended in the first year of life, generally between 9 and 15 months of age.
Surgical options depend on type of polydactyly.
Few clinical outcome studies exist regarding the treatment of central polydactyly. Tada and colleagues note that satisfactory surgical correction of central polydactyly is difficult to achieve and that outcomes are generally poor. In Tada’s study, 12 patients were reviewed. All patients required secondary surgical procedures to address flexion contractures and angular deviation at the IP joint level.
However, several primary factors contribute to the complexity of central polydactyly reconstruction. Hypoplastic joints and soft tissues that predispose the reconstructed finger to joint contracture, and angular deformities as well as complex tendon anomalies, are often difficult to address. Therefore, treatment is wholly dependent on the anatomic components present, the degree of syndactyly, and the function of the duplicated finger.
After the first discovery and description of Marshall–Smith syndrome in 1971, research to this rare syndrome has been carried out.
- Adam, M., Hennekam, R.C.M., Butler, M.G., Raf, M., Keppen, L., Bull, M., Clericuzio, C., Burke, L., Guttacher, A., Ormond, K., & Hoyme, H.E. (2002). Marshall–Smith syndrome: An osteochondrodysplasia with connective tissue abnormalities. 23rd Annual David W. Smith Workshop on Malformations and Morphogenesis, August 7, Clemson, SC.
- Adam MP, Hennekam RC, Keppen LD, Bull MJ, Clericuzio CL, Burke LW, Guttmacher AE, Ormond KE and Hoyme HE: Marshall-Smith Syndrome: Natural history and evidence of an osteochondrodysplasia with connective tissue abnormalities. American Journal of Medical Genetics 137A:117–124, 2005.
- Baldellou Vazquez A, Ruiz-Echarri Zelaya MP, Loris Pablo C, Ferr#{225}ndez Longas A, Tamparillas Salvador M. El sIndrome de Marshall-Smith: a prop#{243}sito de una observad#{243}n personal. An Esp Pediatr 1983; 18:45-50.
- Butler, M.G. (2003). Marshall–Smith syndrome. In: The NORD Guide to Rare Disorders. (pp219–220) Lippincott, Williams & Wilkins, Philadelphia, PA.
- Charon A, Gillerot T, Van Maldergem L, Van Schaftingen MH, de Bont B, Koulischer L. The Marshall–Smith syndrome. Eur J Pediatr 1990; 150: 54-5.
- Dernedde, G., Pendeville, P., Veyckemans, F., Verellen, G. & Gillerot, Y. (1998). Anaesthetic management of a child with Marshall–Smith syndrome. Canadian Journal of Anesthesia. 45 (7): 660. Anaesthetic management of a child with Marshall-Smith syndrome
- Diab, M., Raff, M., Gunther, D.F. (2002). Osseous fragility in Marshall–Smith syndrome. Clinical Report: Osseous fragility in Marshall-Smith syndrome
- Ehresmann, T., Gillessen-Kaesbach G., Koenig R. (2005). Late diagnosis of Marshall Smith Syndrome (MSS). In: Medgen 17.
- Hassan M, Sutton T, Mage K, LimalJM, Rappaport R. The syndrome of accelerated bone maturation in the newborn infant with dysmorphism and congenital malformations: (the so-called Marshall–Smith syndrome). Pediatr Radiol 1976; 5:53-57.
- Hoyme HE and Bull MJ: The Marshall-Smith Syndrome: Natural history beyond infancy. Western Society for Pediatric Research, Carmel, California, February, 1987. Clin Res 35:68A, 1987.
- Hoyme HE and Bull MJ: The Marshall-Smith Syndrome: Natural history beyond infancy. David W. Smith Morphogenesis and Malformations Workshop. Greenville, SC, August, 1987. Proceedings of the Greenwood Genetics Center 7:152, 1988.
- Hoyme HE, Byers PH, Guttmacher AE: Marshall–Smith syndrome: Further evidence of an osteochondrodysplasia in long-term survivors. David W. Smith Morphogenesis and Malformations Workshop, Winston-Salem, NC, August, 1992. Proceedings of the Greenwood Genetic Center 12:70, 1993.
- .
- Tzu-Jou Wang (2002). Marshall–Smith syndrome in a Taiwanese patient with T-cell immunodeficiency. Am J Med Genet Part A;112 (1):107-108.