Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
If mucormycosis is suspected, amphotericin B therapy should be immediately administered due to the rapid spread and high mortality rate of the disease. Amphotericin B is usually administered for an additional 4–6 weeks after initial therapy begins to ensure eradication of the infection. Isavuconazole was recently FDA approved to treat invasive aspergillosis and invasive mucormycosis.
After administration of either amphotericin B or posaconazole, surgical removal of the "fungus ball" is indicated. The disease must be monitored carefully for any signs of reemergence.
Surgical therapy can be very drastic, and in some cases of disease involving the nasal cavity and the brain, removal of infected brain tissue may be required. In some cases surgery may be disfiguring because it may involve removal of the palate, nasal cavity, or eye structures. Surgery may be extended to more than one operation. It has been hypothesized that hyperbaric oxygen may be beneficial as an adjunctive therapy because higher oxygen pressure increases the ability of neutrophils to kill the organism.
Nocardiosis requires at least 6 months of treatment, preferably with trimethoprim/sulfamethoxazole or high doses of sulfonamides. In patients who do not respond to sulfonamide treatment, other drugs, such as ampicillin, erythromycin, or minocycline, may be added.
Treatment also includes surgical drainage of abscesses and excision of necrotic tissue. The acute phase requires complete bed rest; as the patient improves, activity can increase.
A new combination drug therapy (sulfonamide, ceftriaxone, and amikacin) has also shown promise.
The current medical treatments for aggressive invasive aspergillosis include voriconazole and liposomal amphotericin B in combination with surgical debridement.
For the less aggressive allergic bronchopulmonary aspergillosis findings suggest the use of oral steroids for a prolonged period of time, preferably for 6–9 months in allergic aspergillosis of the lungs. Itraconazole is given with the steroids, as it is considered to have a "steroid sparing" effect, causing the steroids to be more effective, allowing a lower dose.,
Other drugs used, such as amphotericin B, caspofungin (in combination therapy only), flucytosine (in combination therapy only), or itraconazole,
are used to treat this fungal infection. However, a growing proportion of infections are resistant to the triazoles. "A. fumigatus", the most commonly infecting species, is intrinsically resistant to fluconazole.
In the majority of immunocompetent individuals, histoplasmosis resolves without any treatment. Antifungal medications are used to treat severe cases of acute histoplasmosis and all cases of chronic and disseminated disease. Typical treatment of severe disease first involves treatment with amphotericin B, followed by oral itraconazole.
Liposomal preparations of amphotericin B are more effective than deoxycholate preparations. The liposomal preparation is preferred in patients that might be at risk of nephrotoxicity, although all preparations of amphotericin B have risk of nephrotoxicity. Individuals taking amphotericin B are monitored for renal function.
Treatment with itraconazole will need to continue for at least a year in severe cases, while in acute pulmonary histoplasmosis, 6 to 12 weeks treatment is sufficient. Alternatives to itraconazole are posaconazole, voriconazole, and fluconazole. Individuals taking itraconazole are monitored for hepatic function.
Prevention of aspergillosis involves a reduction of mold exposure via environmental infection-control. Anti-fungal prophylaxis can be given to high-risk patients. Posaconazole is often given as prophylaxis in severely immunocompromised patients.
Significant disease develops in fewer than 5% of those infected and typically occurs in those with a weakened immune system. Mild asymptomatic cases often do not require any treatment, and the symptoms will go away within a few months. Those with severe symptoms may benefit from anti-fungal therapy, which usually requires 3–6 months of treatment. There is a lack of prospective studies that examine optimal anti-fungal therapy for coccidioidomycosis.
On the whole, oral fluconazole and intravenous amphotericin B are used in progressive or disseminated disease, or in immunocompromised individuals. Amphotericin B used to be the only available treatment, although now there are alternatives, including itraconazole or ketoconazole may be used for milder disease. Fluconazole is the preferred medication for coccidioidal meningitis, due to its penetration into CSF. Intrathecal or intraventricular amphotericin B therapy is used if infection persists after fluconazole treatment. Itraconazole is used for cases that involve treatment of infected person's bones and joints. The antifungal medications posaconazole and voriconazole have also been used to treat coccidioidomycosis. Because the symptoms of valley fever are similar to the common flu and other respiratory diseases, it is important for public health professionals to be aware of the rise of valley fever and the specifics of diagnosis. Greyhound dogs often get valley fever as well, and their treatment regimen involves 6–12 months of Ketoconazole, to be taken with food.
In most cases, the prognosis of mucormycosis is poor and has varied mortality rates depending on its form and severity. In the rhinocerebral form, the mortality rate is between 30% and 70%, whereas disseminated mucormycosis presents with the highest mortality rate in an otherwise healthy patient, with a mortality rate of up to 90%. Patients with AIDS have a mortality rate of almost 100%. Possible complications of mucormycosis include the partial loss of neurological function, blindness and clotting of brain or lung vessels.
People with AIDS are given macrolide antibiotics such as azithromycin for prophylactic treatment.
People with HIV infection and less than 50 CD4+ T-lymphocytes/uL should be administered prophylaxis against MAC. Prophylaxis should be continued for the patient's lifetime unless multiple drug therapy for MAC becomes necessary because of the development of MAC disease.
Clinicians must weigh the potential benefits of MAC prophylaxis against the potential for toxicities and drug interactions, the cost, the potential to produce resistance in a community with a high rate of tuberculosis, and the possibility that the addition of another drug to the medical regimen may adversely affect patients' compliance with treatment. Because of these concerns, therefore, in some situations rifabutin prophylaxis should not be administered.
Before prophylaxis is administered, patients should be assessed to ensure that they do not have active disease due to MAC, M. tuberculosis, or any other mycobacterial species. This assessment may include a chest radiograph and tuberculin skin test.
Rifabutin, by mouth daily, is recommended for the people's lifetime unless disseminated MAC develops, which would then require multiple drug therapy. Although other drugs, such as azithromycin and clarithromycin, have laboratory and clinical activity against MAC, none has been shown in a prospective, controlled trial to be effective and safe for prophylaxis. Thus, in the absence of data, no other regimen can be recommended at this time.The 300-mg dose of rifabutin has been well tolerated. Adverse effects included neutropenia, thrombocytopenia, rash, and gastrointestinal disturbances.
Conventional "amphotericin B desoxycholate" (AmB: used since the 1950s as a primary agent) is known to be associated with increased drug-induced Nephrotoxicity (Renal toxicity) impairing Renal function. Other formulations have been developed such as lipid soluble formulations to mitigate such side-effects as direct proximal and distal tubular cytotoxicity. These include liposomal amphotericin B, "amphotericin B lipid complex" such as Abelcet (brand) "amphotericin B phospholipid complex" also as "AmBisome Intravenous", or "Amphotec Intravenous" (Generic; Amphotericin B Cholesteryl Sul) and, "amphotericin B colloidal dispersion", all shown to exhibit a decrease in nephrotoxicity. The later was not as effective in one study as "amphotericin B desoxycholate" which had a 50% murine morbidity rate versus zero for the AmB colloidal dispersion.
The cost of AmB deoxycholate in 2015, for a patient of at 1 mg/kg/day dosage, was approximately $63.80, compared to 5 mg/kg/day of liposomal AmB at $1318.80. This may be a concern in resource-limited settings.
Postinfection treatment involves a combination of antituberculosis antibiotics, including rifampicin, rifabutin, ciprofloxacin, amikacin, ethambutol, streptomycin, clarithromycin or azithromycin.
NTM infections are usually treated with a three-drug regimen of either clarithromycin or azithromycin, plus rifampicin and ethambutol. Treatment typically lasts at least 12 months.
Although studies have not yet identified an optimal regimen or confirmed that any therapeutic regimen produces sustained clinical benefit for patients with disseminated MAC, the Task Force concluded that the available information indicated the need for treatment of disseminated MAC. The Public Health Service therefore recommends that regimens be based on the following principles:
- Treatment regimens outside a clinical trial should include at least two agents.
- Every regimen should contain either azithromycin or clarithromycin; many experts prefer ethambutol as a second drug. Many clinicians have added one or more of the following as second, third, or fourth agents: clofazimine, rifabutin, rifampin, ciprofloxacin, and in some situations amikacin. Isoniazid and pyrazinamide are not effective for the therapy of MAC.
- Therapy should continue for the lifetime of the patient if clinical and microbiologic improvement is observed.
Clinical manifestations of disseminated MAC—such as fever, weight loss, and night sweats—should be monitored several times during the initial weeks of therapy. Microbiologic response, as assessed by blood culture every 4 weeks during initial therapy, can also be helpful in interpreting the efficacy of a therapeutic regimen.Most patients who ultimately respond show substantial clinical improvement in the first 4–6 weeks of therapy. Elimination of the organisms from blood cultures may take somewhat longer, often requiring 4–12 weeks.
Fungal meningitis is treated with long courses of high dose antifungal medications. The duration of treatment is dependent upon the causal pathogen and the patient's ability to stave off the infection; for patients with a weaker immune system or diabetes, treatment will often take longer.
The prognosis of nocardiosis is highly variable. The state of the host's health, site, duration, and severity of the infection all play parts in determining the prognosis. As of now, skin and soft tissue infections have a 100% cure rate, and pleuropulmonary infections have a 90% cure rate with appropriate therapy. The cure rate falls to 63% with those infected with dissemented nocardiosis, with only half of those surviving infections that cause brain abscess. Additionally, 44% of people who are infected in the spinal cord/brain die, increasing to 85% if that person has an already weakened immune system. Unfortunately, there is not a preventative to nocardiosis. The only recommendation is to protect open wounds to limit access.
Treatment usually involves high doses of steroids such as dexamethasone. While high doses of steroids may risk laminitis, low doses are associated with refractory cases. Antibiotics are used to treat any residual nidus of "S. equi". Non-steroidal anti-inflammatory drugs (NSAIDs), such as phenylbutazone or flunixin, may be useful to reduce fever and relieve pain. Intravenous DMSO is sometimes used as a free-radical scavenger and anti-inflammatory. Additionally, wrapping the legs may reduce edema and skin sloughing. Supportive care with oral or IV fluids may also be required.
Prognosis is good with early, aggressive treatment (92% survival in one study).
Pathogenic zygomycosis is caused by species in two orders: Mucorales or Entomophthorales, with the former causing far more disease than the latter. These diseases are known as "mucormycosis" and "entomophthoramycosis", respectively.
- Order Mucorales (mucormycosis)
- Family Mucoraceae
- "Absidia" ("Absidia corymbifera")
- "Apophysomyces" ("Apophysomyces elegans" and "Apophysomyces trapeziformis")
- "Mucor" ("Mucor indicus")
- "Rhizomucor" ("Rhizomucor pusillus")
- "Rhizopus" ("Rhizopus oryzae")
- Family Cunninghamellaceae
- "Cunninghamella" ("Cunninghamella bertholletiae")
- Family Thamnidiaceae
- "Cokeromyces" ("Cokeromyces recurvatus")
- Family Saksenaeaceae
- "Saksenaea" ("Saksenaea vasiformis")
- Family Syncephalastraceae
- "Syncephalastrum" ("Syncephalastrum racemosum")
- Order Entomophthorales (entomophthoramycosis)
- Family Basidiobolaceae
- "Basidiobolus" ("Basidiobolus ranarum")
- Family Ancylistaceae
- "Conidiobolus" ("Conidiobolus coronatus/Conidiobolus incongruus")
The term oomycosis is used to describe oomycete infections. These are more common in animals, notably dogs and horses. These are heterokonts, not true fungi. Types include pythiosis (caused by "Pythium insidiosum") and lagenidiosis.
Zygomycosis has been described in a cat, where fungal infection of the tracheobronchus led to respiratory disease requiring euthanasia.
There is no effective treatment for this condition. It has been reported that clearance of lesions can be done with melphalan and cyclophosphamide alone or in combination with prednisone. Both isotretinoin and etretinate have also been shown to improve the conditions. All medications listed can cause adverse symptoms, with isotretinoin and etretinate particularly dangerous since they are both teratogens. Other attempted treatments include interferon-alpha, cyclosporine, PUVA photochemotherapy, electron-beam therapy, IVIg, and dermabrasion. However, the overall prognosis for the disease is poor. There are reported instances of remission of the disease when treated with a combination of Revlimid and Dexamethasone over a 24-month period.
It is not practical to test or decontaminate most sites that may be contaminated with "H. capsulatum", but the following sources list environments where histoplasmosis is common, and precautions to reduce a person's risk of exposure, in the three parts of the world where the disease is prevalent. Precautions common to all geographical locations would be to avoid accumulations of bird or bat droppings.
The US National Institute for Occupational Safety and Health (NIOSH) provides information on work practices and personal protective equipment that may reduce the risk of infection. This document is available in English and Spanish.
Authors at the University of Nigeria have published a review which includes information on locations in which histoplasmosis has been found in Africa (in chicken runs, bats and the caves bats infest, and in soil), and a thorough reference list including English, French, and Spanish language references.
Fulminant infection from meningococci bacteria in the bloodstream is a medical emergency and requires emergent treatment with adequate antibiotics. Benzylpenicillin was once the drug of choice with chloramphenicol as a good alternative in allergic patients. Ceftriaxone is an antibiotic commonly employed today. Hydrocortisone can sometimes reverse the adrenal insufficiency. Plastic surgery and tissue grafting are sometimes needed to treat tissue necrosis resulting from the infection.
Prognosis depends on the pathogen responsible for the infection and risk group. Overall mortality for "Candida" meningitis is 10-20%, 31% for patients with HIV, and 11% in neurosurgical cases (when treated). Prognosis for "Aspergillus" and coccidioidal infections is poor.
It can be treated with systemic antiviral drugs, such as aciclovir or valganciclovir. Foscarnet may also be used for immunocompromised host with Herpes simplex and acyclovir-resistant Herpes simplex.
The drug of choice for the treatment of uncomplicated strongyloidiasis is ivermectin. Ivermectin does not kill the "Strongyloides" larvae, only the adult worms, therefore repeat dosing may be necessary to properly eradicate the infection. There is an auto-infective cycle of roughly two weeks in which Ivermectin should be re-administered however additional dosing may still be necessary as it will not kill "Strongyloides" in the blood or larvae deep within the bowels or diverticula. Other drugs that are effective are albendazole and thiabendazole (25 mg/kg twice daily for 5 days—400 mg maximum (generally)). All patients who are at risk of disseminated strongyloidiasis should be treated. The optimal duration of treatment for patients with disseminated infections is not clear.
Treatment of strongyloidiasis can be difficult and "Strongyloides" has been known to live in individuals for decades; even after treatment. Continued treatment is thus necessary even if symptoms resolve.
Because of the high cost of Stromectol, the veterinary formula Ivomec can be used. Government programs are needed to help citizens finance lifelong medication.
Clothes and sheets must be washed with enzyme washing powder and dried on hot daily.
Systemic candidiasis is an infection of Candida albicans causing disseminated disease and sepsis, invariably when host defenses are compromised.
Disseminated protothecosis is most commonly seen in dogs. The algae enters the body through the mouth or nose and causes infection in the intestines. From there it can spread to the eye, brain, and kidneys. Symptoms can include diarrhea, weight loss, weakness, inflammation of the eye (uveitis), retinal detachment, ataxia, and seizures.
Dogs with acute blindness and diarrhea that develop exudative retinal detachment should be assessed for protothecosis. Diagnosis is through culture or finding the organism in a biopsy, cerebrospinal fluid, vitreous humour, or urine. Treatment of the disseminated form in dogs is very difficult, although use of antifungal medication has been successful in a few cases. Prognosis for cutaneous protothecosis is guarded and depends on the surgical options. Prognosis for the disseminated form is grave. This may be due to delayed recognition and treatment.
The best treatment for MAS has not been firmly established. Most commonly used treatments include high-dose glucocorticoids, and cyclosporine. In refractory cases treatment regimens are used similar to that in HLH.